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ABSTRACT

Video streaming traffic is rapidly growing in mobile networks. Mo-

bile Network Operators (MNOs) are expected to keep up with this

growing demand, while maintaining a high video Quality of Ex-

perience (QoE). This makes it critical for MNOs to have a solid

understanding of users’ video QoE with a goal to help with net-

work planning, provisioning and traffic management. However,

designing a system to measure video QoE has several challenges:

i) large scale of video traffic data and diversity of video streaming

services, ii) cross-layer constraints due to complex cellular network

architecture, and iii) extracting QoE metrics from network traffic.

In this paper, we present VideoNOC, a prototype of a flexible and
scalable platform to infer objective video QoE metrics (e.g., bitrate,

rebuffering) for MNOs. We describe the design and architecture of

VideoNOC, and outline the methodology to generate a novel data

source for fine-grained video QoEmonitoring.We then demonstrate

some of the use cases of such a monitoring system. VideoNOC re-

veals video demand across the entire network, provides valuable

insights on a number of design choices by content providers (e.g.,

OS-dependent performance, video player parameters like buffer

size, range of encoding bitrates, etc.) and helps analyze the impact of

network conditions on video QoE (e.g., mobility and high demand).
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1 INTRODUCTION

Over the past several years, HTTP Adaptive Streaming (HAS) has

become the de facto standard for video streaming over the Internet,

with video traffic surging to over 70% of all network data in 2016 [4].

Consequently, network operators are very interested in understand-

ing if today’s video services are performing as efficiently as possible

and provide a high Quality of Experience (QoE) to the end users. In

particular, MNOs are interested in correlating customer QoE with

their network’s performance to help in resource provisioning and

troubleshooting. We focus on Mobile Network Operators (MNOs),

whose network architecture complexity, radio spectrum constraints

and cross-layer protocol interactions make video QoE monitoring

more challenging and critical.

Measuring video QoE, however, is difficult as user experience

is subjective and hard to quantify. Recent standardization efforts

propose to use objective video QoE metrics such as video quality
and video stalls to model user QoE [8, 9]. The challenge before

MNOs and hence our focus is to infer these objective metrics for a

diverse set of video streaming services at network scale.

Existing networkmonitoring and troubleshooting are donewithin

Network Operations Centers (NOCs) [3]. NOCs track overall state

and performance of the network elements and links, to facilitate de-

tection of, e.g., outages, failures, and security issues, as well as of the

operator-managed services (VPNs, VoIP, or IPTV). Cellular NOCs

can also use aggregated radio-level Key Performance Indicators

(KPIs) generated by networks elements, such as channel availability,

link utilization and some form of link-layer throughput measure-

ment. While these low-level metrics provide a high-level picture

of the overall network performance, they alone are not adequate

for assessing application-layer performance and user QoE. This

motivates the design and deployment of VideoNOC, a “specialized
NOC” focused on analyzing QoE metrics for video streams.

In theory, there can bemultiple approaches to design aVideoNOC.
The simplest approach could be to proactively collect and analyze

QoE data from all video clients using the MNO’s network. This is

clearly infeasible because MNOs do not have direct access to the

video clients at the end devices. Alternatively, a VideoNOC could

attempt to collect QoE information collected by some Content

Providers (CPs) using in-client measurements [5, 37]. This data,

however, is owned by CPs and is not available to the MNO. Even if

made available, this data is video service-specific and may not have

the detail or granularity that would be needed by the MNO for its

own provisioning and troubleshooting purposes. Another possible

approach could be tomeasure application and network performance

through field testing in different locations of the network. However,

with the scale of today’s networks and plethora of mobile video

services, this is simply not scalable. Hence, these approaches are

not adequate for network-wide video QoE monitoring.
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The focus of this paper is, therefore, on the design and imple-

mentation of a practical VideoNOC, which needs to passively collect
data from the MNO’s network elements and analyze it to learn the

users’ QoE. This alleviates the need to interact directly with client

devices, makes correlation with network-level performance more

straightforward, and is less expensive than active field testing. In

addition to monitoring QoE, a VideoNOC may also have elements to

perform network troubleshooting based on QoE data. We relegate

this aspect of VideoNOC to future work.

Our design of VideoNOC utilizes passively collected logs of

HTTP/S transactions to infer objective QoEmetrics, such as average
bitrate and re-buffering ratio (for unencrypted video), and session
throughput (for all video), as periodic or per-session measurements.

In designing VideoNOC, we address three key challenges:

Scalability: For network-wide QoE monitoring, VideoNOC is de-

signed as a light-weight system using two key approaches: i) it uses

a transparent non-caching web proxy for passive measurements

thus avoiding packet-level processing, ii) it processes HTTP/S logs

in a distributed manner at regional Cellular Data Centers (CDCs),

the convenient traffic aggregation points in cellular network, thus

avoiding the need to move the raw logs to a central location.

Cross-layer aspects: The data collected by the web proxy

lacks network location information as it operates at a higher layer

(HTTP/S) in the network stack with no notion of mobile network

location. We augment the web proxy data with network location us-

ing the radio-level logs collected at a different layer in the network.

Further, to reduce the overhead of this step, we aggregate applica-

tion data from the same video sessions at a time granularity that

reduces its volume by three orders of magnitude but at the same

time preserves the information for network location augmentation.

QoE inference: It is challenging to identify the video traffic

and then infer video QoE from passive network measurements. We

identify video traffic using signature vectors composed of various

HTTP headers for unencrypted and TLS headers for encrypted

traffic. Previous techniques for inferring QoE from passive network

measurements have relied on statistical methods that require sig-

nificant training overhead [12, 25, 27]. In our work, we devise a less

burdensome technique that models network dynamics of adaptive

video delivery using domain knowledge.

We deploy VideoNOC as a prototype in the real network of a

large U.S. based MNO. We demonstrate that our implementation

of VideoNOC can provide an MNO with a spatio-temporal view of

video demand across the network. It can help MNOs understand

the impact of network factors such as user mobility and demand

on the video QoE. Furthermore, VideoNOC can also provide unique

insights from the network data otherwise not available from QoE

monitoring performed at end devices by CPs or on servers and

CDNs. These insights motivate both best practices as well as op-

portunities for cooperation between MNOs and CPs for the benefit

of all stakeholders in the mobile video ecosystems.

Our major contributions include:

(1) Design and architecture of VideoNOC, outlining specific de-

cisions that lead to building a scalable, light-weight system

on top of the existing mobile network infrastructure.

(2) Methodology for creating a novel data source for MNOs, the

Mobile Video QoE Metrics, which offer insights into the usage
and performance of video services across network locations.

(3) Unique insights into the design and behavior of 15 mobile

video services from an MNO’s perspective.

The remainder of the paper is organized as follows. Section 2

presents the relevant background. Section 3 outlines the system

design and goals, while Section 4 describes the implementation.

Several use cases and insights are presented in Section 5. Related

work follows in Section 6, while Section 7 concludes the paper.

2 BACKGROUND

We present a high-level overview of LTE cellular architecture in-

cluding different network measurement data sources, key HAS

streaming concepts and the relevant video QoE metrics.

LTE Cellular Architecture:Modern cellular network such as

Long Term Evolution (LTE) consists of two major components: a

Radio Access Network (RAN) and an Evolved Packet Core Network

(EPC). The RAN includes various devices or user equipment (UE)

and base stations (known as eNodeBs). The EPC consists of Serving

Gateway (SGW), Packet Data Network Gateway (PGW), Mobility

Management Entity (MME) and other elements. The EPC is located

at geographically distributed CDCs (Figure 1). A UE is a mobile

device (smartphone, tablet, LTE USB dongle, or an LTE modem

card, etc.) that connects to the eNodeB over the radio channel.

Each eNodeB controls a cell site that typically consists of several

radio cells. A cell covers a geographic area with a directional an-

tenna using one frequency band. A sector or face can have multiple

cells covering the same direction but possibly different range due

to the frequency band characteristics. A UE is connected to a single

cell at any point in time and can be handed off between cells within

a sector, cells in different sectors, or cells on different eNodeBs.

Call Detail Records (CDR): One of the important data sets

generated in a cellular network is the Call Detail Records (CDR).

These logs contain the RAN information for a UE and are created by

MME as a part of its mobility and hand-offmanagement function [2].

When UE connects to the network, a Radio Access Bearer (RAB)

is established to allow the UE to exchange data over the RAN, and

appropriate state is created, maintained and logged, so that mobility

can be managed and paging functions performed. CDRs contain

association between the UE and network location, i.e., the cell,

sector, and the eNodeB. However, this association is internal to the

network and not exposed externally. In addition, data is transmitted

inside tunnels internal to the network, which hides the transport

and higher layers from the internal network elements. Hence, MME

that generates CDRs is unaware of applications transmitting the

data, and application-aware elements, such as proxies external to

the cellular network, are unaware of the internal topology, making

it challenging to correlate the data across layers.

HTTP Adaptive Streaming (HAS): In HAS, the video is split

into chunks, usually of equal duration, with each chunk encoded

at multiple bitrates chosen from a pre-defined set. The video player

on the client decides the quality of chunks to stream based on some

adaptation logic. The use of HTTP makes this approach middle-box

friendly and enables content providers to use commodity Con-

tent Distribution Network (CDN) servers. The bitrate adaptation

at the client allows a diverse set of clients to perform well under a

variety of network conditions. As a result, an overwhelming ma-

jority of video CPs now rely on HAS-based technologies such as
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Figure 1: A simplified view of a HAS video delivery with the placement of VideoNOC components in the LTE network

HLS [15] and MPEG-DASH [6]. While parts of the framework for

these technologies is standardized, they still allow CPs to choose

some key video design parameters such as bitrate adaptation algo-

rithms [28, 30, 45], encoding video and audio bitrates, number of

bitrate levels, etc. Different choices of these parameters often lead to

different video performance under similar network conditions [14].

QoE metrics: According to recent standardization efforts and

literature, QoE in HAS can be characterized by multiple objective

metrics such as video quality, re-buffering ratio, quality switches and
startup delay [8, 9, 34]. Average bitrate can be used to reflect the

streamed video quality, based on the requirement for more bits to

encode a higher quality image. In general, the bitrate of a particular

quality level depends on the complexity of the video content being

encoded and the encoding efficiency. The selection of quality levels

made available to the video player is determined by the each CP.

Re-buffering ratio is the proportion of the viewing time the video

stalled because of buffer underrun. Bitrate switches represent user-

perceived image quality variations in the session. VideoNOC gives

a detailed estimation of these QoE metrics for unencrypted video

services. In addition, QoE is also impacted by video startup time

which is the delay it takes for the video to begin playing since

the user requested it. VideoNOC currently does not estimate video

startup delay and we consider it as a part of future work.

3 SYSTEM DESIGN

This section presents the main goals of VideoNOC and key design

decisions.

Goals: VideoNOC is designed to achieve the following goals:

• Assess video QoE and demand: It provides an MNO with a com-

prehensive view of video QoE and relative resource demand

imposed by a wide variety of CPs within its network. This al-

lows video QoE-aware capacity planning, traffic management,

and other in-network optimizations.

• Understand cross-layer interactions: This allows MNOs to un-

derstand the impact of network-layer factors such as mobility

and radio resource provisioning on video QoE.

• Detect issues in video service design: VideoNOC can uncover

design-related issues that are not apparent to CPs but impact

network-related performance of the services. For example,

it can detect bandwidth-wasting video services that impact

their own and other users’ experience. This allows MNOs

to recommend best practices of video service design to the

CPs with an overall goal of improving user QoE and efficient

utilization of network resources.

Video QoE Data 
Processing

HTTP/S
Data

Video QoE Data 
Publisher

Data Feed
Platform

Video QoE Data

CDR

SiteMaster

Video QoE Data tagged 
with network location

Distributed Edge Analytics
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Figure 2: VideoNOC architecture

3.1 Design choices

Data sources: We label any type of network performance or high-

level application-layer analysis of QoE in the operator’s network

as ‘network data’. To meet the goals of VideoNOC, we have to use

network data intelligently to mitigate the lack of access to ground

truth from video players or CPs.

In a typical cellular network, the traditional performance data

source are radio level KPIs, which do not reflect application-level

performance, but provide low-level radio statistics about radio bear-

ers and radio resource usage. Performance of higher layers of net-

working stack have to be obtained from either transport layer data,

or web proxies (HTTP and HTTPS transactions). There are trade-

offs, pros and cons with all of these data sources. Transport-layer

data (TCP/UDP flow data) provides insights into packet-level trans-

missions, TCP connection details like throughput, retransmissions,

etc., which is fairly granular but requires significant processing

power to extract higher-layer information. HTTP data contains

protocol-specific information, but any loss, retransmissions, or

throughput variation in lower layers is hidden. Finally, radio-level

data contains device associations with base stations, sectors, and

cells, as well as handover information and timing, but has no notion

of transport or higher layer protocols.

Within our VideoNOC design, we find a good compromise in

using HTTP (including HTTPS) logs and RAN data. HAS video

services are based on HTTP and we find key pieces of information

in URIs and HTTP headers that allow us to extract QoE metrics to a

satisfactory level of accuracy and precision. Obtaining HTTP data

is relatively easy with the deployment of a standard web proxy. We

have to use RAN data to provide network location (serving radio

cell), since higher-level protocols (HTTP/TCP/UDP) have no notion

of mobile network location. As explained later, cellular networks

have a built-in RAN data reporting capabilities that can be exploited

for our purpose. We decide not to use TCP flow data at this time
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due to the very high implementation, deployment and processing

overhead, but leave it as an opportunity for future work.

There is a cross-layer aspect to the decision on data sources. To

relate RAN data and HTTP data, such as locate the serving cell for

each HTTP request, we have to use the existing cellular network

infrastructure capability to associate IP data traffic with the cellular

device. Otherwise, the internal UE identification on the RAN could

not be related to HTTP traffic outside the PGW.

Centralized vs. decentralized processing:Another design de-

cision is where to process the HTTP logs collected by the web proxy.

With the HTTP log arrival rate of up to 15 GB/min or 2 Gbps in our

limited deployment, it is prohibitive to transfer them to a central

location. We process this data at the edge using an already available

generic Edge Analytics (EA) computation platform. Processing at

the edge reduces the data to be transported to the central location.

This reduction in data volume is significant and is approximately

3 orders of magnitude. As shown in Figure 2, video QoE data is

transported without location identifiers, using an existing Data

Feed Platform (DFP) similar to Apache Kafka
1
, to be augmented

with network location at a central location.

QoEmetrics aggregation: Since HTTP log processing extracts

video QoE metrics at the edge and then discards the logs, we need

to decide which metrics to generate and preserve, and how often

to report them, while maintaining the ability to associate network

location at a later stage.

The length of video sessions greatly varies depending on the

length of videos, loss of interest, and other factors. One option is to

generate session-level QoE metrics at the end of the video session,

but this has three main drawbacks: (i) aggregate QoE metrics of a

long video session (e.g., 1 or 2 hours) cannot reflect impact of the

mobility and handoffs, (ii) aggregate QoE does not reflect possible

variability throughout the session, (iii) long sessions may prevent

VideoNOC to report QoE metrics in a timely manner.

Therefore, it is critical to group video chunks appropriately in

time and space to enable both timely reporting and account for

mobility. We explore several periodic reporting options. Compared

to per-session reporting, per-chunk reporting would increase the

reported data volume significantly as well as processing overhead,

since chunks are typically 2-10 seconds in duration. We tested 5

minutes as a reporting period, but found that when UEs are mobile

and stream video, they can handoff between several cell sites with 5

minutes. This makes it impossible to correctly associate the serving

cell to the part of the video session, and due to intermittent nature

of HAS downloads, time spent in each cell is not reflective of the

number of chunks downloaded.

We then explored shorter time intervals for periodic reporting

and find that it is extremely rare to find more than one handoff

within one minute. This results in a 1 to 1 relationship between the

serving cell and the group of video chunks. The cost of 1-minute

reporting is certainly much higher than 5-minute and per-session

reporting, about 60% in data volume, but we find the trade-off

acceptable and establish that establish it as correct compromise
2
.

1
kafka.apache.org/

2
For handoffs observed within 1-minute period, we assign the first serving cell to

that minute. The reason is that HAS player reaction to changing network conditions

is often delayed due to throughput smoothing functions and their ability to detect

changes generally after the current video chunks have fully downloaded

In addition, the goal is to look for persistent issues in the network

or video services, rather than transient effects.

Data analysis: After the video QoE and full network location

data are joined, it remains in the Data Store (DS) to be used for

reporting and analysis. We use three approaches for this purpose,

(i) a dashboard for aggregated periodic reports, (ii) interactive maps

for spatio-temporal analysis, and (iii) special studies from raw data.

4 ARCHITECTURE AND IMPLEMENTATION

We next describe the architecture and implementation of the main

VideoNOC components, including data collection, video QoE metric

estimation, and network location tagging.

4.1 HTTP data collection

We use passively collected logs from a transparent web proxy cov-

ering a fraction of CDCs, corresponding to several PGWs of the

cellular network, where all IP traffic from and to the Internet con-

veniently aggregates. The web proxy handles HTTP and HTTPS

transactions between a subset of UEs and corresponding servers in

a standard manner, by mediating HTTP transactions and passing

through HTTPS, while logging the activity. This web proxy behaves

similar to the well-known squid [7].
The web proxy instances generate 4 parallel streams of logs,

which are ingested by EA processes. Logs are delivered as flat files

by the web proxy and placed in 4 directories of a special file system.

Logs are batched in files, with each file covering on the order of 5

minutes of traffic and roughly 250,000-300,000 HTTP transactions

each. Multiple files can cover approximately the same time period

as load varies. The streams always have consistent UE allocation,

as the web proxy places all records for each UE in the same stream,

allowing us to process the four streams in parallel.

Logs include fields as outlined in Table 1 with their source and

usage in video QoE processing. Note that some fields may be un-

populated or not provide full information in every log. For example,

User agent may be improperly populated by the app, URI may ob-

fuscate video chunk information, or Content type field may not

contain video but other generic type. VideoNOC deals with these

issues by either using only available data or deriving it from other

fields and/or stream characteristics, depending on the CP. The UE

ID is anonymized in this and CDR data so that the actual users can-

not be identified. No personally identifiable information (PII) was

gathered or used in conducting this study. To the extent any data

was analyzed, it was anonymous and/or aggregated data. While the

web proxy coverage does not include the entire network, we have

no reason to believe that the general methodology and the available

data set is not reflective of the overall network traffic. Even with
the modest set of available data collected from a fraction of network
locations, we can extract a wealth of valuable insights (see Section 5).

The volume of the HTTP logs varies depending on traffic load of

each CDC, diurnal pattern, etc., with peak ingestion rate of the log

streams reaching about 15 GB per minute. Figure 3 shows the ingest

rates over several days, indicating two important aspects. Most

obviously, some CDCs handle more traffic than others, leading us

to resize the processing power per CDC accordingly. Then, diurnal

variability can be significant in some CDCs calling for elastic scaling.

While some CDCs have a relatively stable traffic load, others exhibit

4



Table 1: HTTP data logged by a web proxy

HTTP log field Source Usage

HTTP request arrival time Proxy Time when player requested a video chunk

Transaction end time Proxy Time when all data of HTTP(S) transaction were sent to the UE

UE ID Proxy/EPC Associates video flows to different UEs

Server IP address Proxy Distinguishes some CPs that do not use domain names

Content length Proxy Distinguishes video chunks from meta-data

User agent HTTP Identifies UE make and model, OS and OS version

Content type HTTP Helps identify video, audio, and other content types

HTTP method HTTP Distinguishes between video chunks and meta-data vs. app feedback

HTTP response code HTTP Detects failed video requests, redirections, etc.

URI HTTP Identifies CPs, CDNs, video chunks, tracks, sessions, meta-data, etc.

SNI HTTPS Identifies CPs and CDNs

Figure 3: Data ingest rates for a representative CDC subset

high variability (up to a factor of 7), indicating that the underlying

distribution of traffic across CDCs will drive the deployment of

resources for this type of data processing.

4.2 QoE inference

Once HTTP log files are ready, they are processed to estimate video

QoE metrics using the EA platform which is composed of virtual

machines and is co-located with the web proxy. Each EA node

consist of 16 Intel Xeon E3 CPUs at 2.7 GHz, 4 cores per CPU, 32

GB RAM and runs CentOS 6.5. Additional nodes can be added as

needed based on the traffic demand. Each EA node runs 4 parallel

processes handling one data stream each, with the outputs merged

at the end of the processing.

Our QoE inference approach first reconstructs video sessions

from HTTP logs. The QoE of a session is then estimated by ex-

tracting useful features from the HTTP logs corresponding to the

session. The QoE estimation is done at both session and per-minute

level. At the end of the QoE inference process, the EA outputs 3

types of records: (i) S-records contain per-session metrics and are

published when session end is detected, (ii) P-records contain pe-

riodic aggregates published every minute, and (iii) B-records that

are both session and periodic in a sense, which contain aggregate

metrics for sessions shorter than 1 minute. Processing overhead of

periodic reporting is less than 6%. The total output of our EA turns

out to reduce the data volume by 3 orders of magnitude, even with

1-minute reporting. Next we describe each of the steps in detail.

4.2.1 Session reconstruction. In order to reconstruct video ses-

sions, we need to distinguish between video and non-video traffic in

the web proxy logs. We identify a record to belong to a certain video

CP by inspecting the HTTP request URI. Figure 4 shows an abstract

template of the chunk request URI from an anonymized CP that

we call VideoApp. Content IDs are arbitrary alpha-numeric strings

http://videoapp.cdn.net/V0987654321/track03/segment101.ts?&token=325435636

Content provider CDN Content ID Chunk quality Chunk ID Session ID

Figure 4: URI template and the extracted information

meaningful only to CDNs, and often randomized or hashed. They

do not allow particular content to be identified from traffic. Since

the request URI is not available for encrypted traffic, we rely on the

Server Name Identification (SNI) [1] to indicate the CP. Non-video

traffic is then filtered out based on the content length. Other useful

meta-data about each session is also collected whenever available,

such as UE OS, OS version and device type (see Table 1).

The set of required signatures to identify a video service is ob-

tained by a combination of two methods: (i) grouping similar URI

patterns from HTTP data and (ii) using active measurement and

packet trace collection. Note that active measurement reveals sig-

natures that the CPs used for the particular UE in that test, as for

example, different CDN might be selected based on UE or external

IP address. This information is then augmented by URI patterns

from HTTP data to cover all variants, if possible. CPs occasionally

change their URI patterns, CDNs, or drop domain names in favor

of IP addresses. These changes can be detected by observing data

volumes, repeating active tests, or using other techniques. Note

that most CPs typically use only a few templates for their content.
The detection of session end is done in several ways. For CPs

that use session tokens or specific session change indicators in the

URI, we use those as triggers. Detecting a video stream with the

different content ID or CP from a UE triggers session end of the

active session for that UE. Otherwise, the empirically determined

timeout without new chunks closes the current session for a UE.

4.2.2 QoE estimation. Once the video sessions have been recon-

structed, we estimate the QoE by extracting useful features from the

records and feeding them into our QoE estimation algorithms. Since

the extracted features are different for encrypted and unencrypted

video sessions, we use different QoE estimation methodologies for

both of them, leading to different levels of QoE view.

Unencrypted traffic: We estimate the following three key QoE

metrics for a session: average bitrate, re-buffering ratio and bitrate
switches. The QoE estimation approach in this case is based on

two key insights. First, an HAS video session can be abstracted

as a sequence of video chunks appearing as separate HTTP GET

requests on the network. Second, the request URI in the video

5



chunks can provide significant information related to the session

QoE such as chunk identifier and quality level (see Figure 4). Thus,

monitoring the HTTP logs corresponding to video chunks along

with relevant information extraction from the request URI allows

us to model a client video session.

Specifically, we get request completion time (Ti ), chunk quality

(Qi ) and chunk size (Si ) for every chunk request i in the video

session V . The chunk duration (L) in seconds is obtained from

the manifest files for a few videos in out-of-band experiments, or

sometimes inferred from the URI, if indicated. The total number

of chunks downloaded in a session is denoted by N . We use this

information to estimate different video quality metrics as follows:

• Average bitrate: We estimate the average bitrate by taking the

time average of the collected chunk size of the session.

ˆbr =

∑N
i=1

Si

N × L
(1)

Average bitrate is a strong indicator of the video quality as CPs

typically use a specific encoding profile per discrete bitrate, which

maps to a single video quality metric value [34].

• Number of bitrate switches: Number of bitrate switches can be

calculated simply by calculating the number of times the chunk

quality changed between consecutive chunks. Here I is the indi-
cator function and has a value of 1, if the consecutive chunks do

not have same quality, zero otherwise.

ˆbr_switch =
N∑
i=2

I (Qi , Qi−1) (2)

• Re-buffering ratio: Intuitively, re-buffering time is estimated by

keeping an account of video chunks that have been downloaded

and the part of that video content that should have been played

so far. The exact details are described in prior work [35].

We also preserve distributions of per-chunk bitrates within ses-

sions, to enable aggregation per bitrate.

Encrypted traffic: For encrypted traffic, we have the TLS trans-

action statistics with a single TLS connection potentially corre-

sponding to multiple HTTP requests. The QoE estimation method-

ology for unencrypted traffic can not be applied to encrypted traffic

as per-HTTP transaction statistics are not available. Hence, for

encrypted traffic, we calculate the session throughput (ST ), which
is defined as follows:

ST =

∑N
i=1

Si

T
, (3)

where Si is the content length of the i
th

TLS transaction in a session

of N transactions andT is the total session time as observed on the

network. We rely on degradation in ST in order to detect degrada-

tion in video QoE. From large scale validation (see subsection 4.3),

we show that ST is strongly correlated with average bitrate.
For a session, we record the overall session throughput as well

as per-minute session throughput which is calculated by consider-

ing transactions only in the current minute. The latter is done to

detect temporary variations in the session QoE. Note that ST is also

calculated for unencrypted video services with the TLS connection

content length replaced by HTTP transaction content length.

Table 2: Correlation between ST and ground truth.

Content ρ(br,ST ) ρ(r r,ST )
type OS1 OS2 OS1 OS2

Live 0.89 0.88 -0.18 -0.10

VoD 0.76 0.80 -0.27 -0.37

4.3 QoE metrics validation

We evaluate the accuracy of our QoE inference algorithms by com-

paring them against the QoE metrics collected by a mainstream 3rd

party video analytics SDK built into VideoApp (anonymized for con-

fidentiality), a mobile app from a large mobile video service serving

unencrypted traffic. The QoE metrics provided by the in-app SDK

consist of average bitrate and re-buffering ratio. This is the typical
approach used by commercial video services to monitor QoE.

Data set: We consider the VideoApp sessions collected by

VideoNOC for a period of 12 days in the year 2017, in a small part of

the network. The estimated QoE metrics of these collected sessions

are compared with the corresponding in-app SDK-collected QoE

metrics referred to as ground truth. It is not trivial to match the

sessions collected on the network with their corresponding in-app

SDK logs. Due to the independent sources and anonymizations of

both data sets, we have to resort to the following matching logic.

We use the session content identifier, session start time and dura-

tion, OS kind and version, and CDN to match sessions. We filter

out sessions under 1 minute since it is challenging to match the

network session duration with the ground truth playtime for such

short sessions. In the case of a single match between data sets, we

use it for comparison, while in cases when a single VideoApp session
matches multiple VideoNOC sessions, we discard all of them. For

the time period under study, we were able to match 70,214 sessions,

which is a small fraction of all VideoApp sessions. Both Live and

VoD are well-represented in this set.

Detailed QoE metrics: We evaluate the inference accuracy for

average bitrate and re-buffering ratio for the above data set (see [35]

for details). The key findings are summarized here:

• We predict the average bitrate within a relative error of 10% for

up to 90% of sessions.

• We accurately predict re-buffering ratio with an absolute error

less than 1% for up to 90% of the sessions.

Video session throughput: In addition, we also analyze the

usability of ST to infer video QoE. This is important as we do not

have chunk-level statistics for all CPs, especially for those encrypt-

ing their data. We correlate the in-app SDK average bitrate and

re-buffering ratio with the calculated ST for the matched sessions

in VideoApp. Table 2 shows the Pearson’s correlation coefficient

(ρ) values between ST and average bitrate (ρ(br,ST )) and between

ST and re-buffering ratio (ρ(r r,ST )) for each analyzed OS. We find

that average bitrate and ST are strongly positively correlated, while

there is a weak negative correlation between re-buffering ratio and

ST . This shows that session throughput can be used as an indica-

tor of video QoE. Specifically, degradation in session throughput

would indicate degradation in average bitrate inmost cases and high

re-buffering in some cases. Recent work also shows that average

downlink throughput maps reasonably well to video QoE [19].
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Figure 5: Location Service architecture

4.4 Network Location Service

RAN data containing network location is generated at the edge

(in CDC), but we specifically chose to associate it to QoE data in

a centralized manner in this implementation of VideoNOC. The
ideal scenario would be to associate network location in the CDC,

but practical considerations led us to the centralized approach.

In particular, (i) network location is already available as part of

the centralized CDR data and (ii) RAN data is not available for

processing in every CDC. It is more efficient to avoid replicating

network location extraction at the edge in our current design.

We build a network Location Service that joins video QoE data

and network location obtained from two other data sources, CDRs

and a master inventory of base stations and cells that the network

operator manages, which we call SiteMaster . CDRs provide the

cell ID for each period that UE was connected, while SiteMaster
contains the cell site physical location and extended radio-level

details, such as frequency, bandwidth, etc.

The design of the Location Service presents two challenges. First,

there are three data sources with different volume, locality, and

other characteristics. Video QoE data is published to the DFP in flat

files covering approximately 5-minutes of real time, similar to its

ingest process. This data may include some records older than 5

minutes, due to timeouts used to delimit video sessions. This data

arrives on the order of up to 5 Mbps on average in randomly dis-

tributed arrivals from multiple CDCs. CDRs arrive at much higher

rate, up to about 70 Mbps, and in much larger files, up to several

GB to tens of GB in size. They contain radio-level sessions of all

network devices. This data source is a very large superset of de-

vices streaming video at any point in time. CDRs arrive from the

same DFP to which VideoNOC is just a subscriber, as opposed to

EA being also a publisher under our control. Location Service has

to ingest large amounts of CDR data and maintain longer history to

maximize match rate to video QoE data arriving in smaller batches.

SiteMaster is a static file updated daily, from which extended net-

work location data is retrieved. It contains on the order of hundreds

of thousands of records.

Second challenge is that the computation must be fast in order

to detect possible network issues as early as possible. The total

processing time has to account for the regular computation, plus

potential restart of the entire job or parts of it in case of failures.

The architecture of the Location Service is presented in Figure 5.

It is composed of three components: Location Generator, Location
Mapper, and Stats Generator, forming a multistage pipeline. The

Location Generator takes CDR data as input and extracts from each

record a subset of fields, such as transaction start and end times, UE

ID, and a vector of cell IDs and duration of time spent associated

with them. We expand this to have one record per serving cell for a

UE. UE IDs are anonymized in a consistent manner for joining with

video QoE data. Then, Location Service fetches extended network

location data from SiteMaster for each cell in the CDRs. The outcome

of Location Generator is a set of records of the form: <cell ID, start
time, end time, UE ID, sector ID, tower ID, latitude, longitude>.

The Location Mapper produces a new set of video QoE data with

network location and other cell-level information by joining the

records produced by Location Generator and video QoE data on the

UE ID field. A new record contains the trajectory of a device during

an entire transaction. The total transaction duration is divided in

periods, each one with its own duration, cell id, sector id, tower id,

and cell site location (latitude and longitude). By looking at these

new videoQoE data records, an operator canmap information about

the user QoE to the underlying physical network. This allows the

operator to understand QoE differences across network elements.

In case of unjoined records, the LocationMapper tags those video

QoE data entries with unknown_location. This happens when video

QoE data records do not have corresponding entries in the CDR

files. Our design shows a trade-off between the number of records

without network location and the computation time. Processing

more CDR files every hour helps reduce the number of records

without network location, but it may take longer to finish. In case

of failures, the re-execution of failed tasks may overlap with the

beginning of the next computation.While this may not be a problem

in large dedicated cluster, it may cause delays in shared clusters.

Finally, the Stats Generator uses the output of the Location Map-

per to compute network location-based statistics, such as the num-

ber of handover between cells (within the same eNodeB and across),

and handover between sectors (within the same eNodeB). These

metrics are added to video QoE data, in addition to serving cell

for periodic, and cell trajectory for per-session records. The final

records are self-contained for reporting and analytics and stored in

a central DS. Both DS and the landing area from DFP are large-scale

repositories on Hadoop Distributed File System (HDFS).

The Location Service is implemented in Java using Apache Spark

[40]. Our motivation for using Spark is that it allows users to effi-

ciently build distributed applications that process a large amount of

data. The Location Generator is composed of map operations; the

Location Mapper uses map, join, filter operations, while the Stats
Generator has map and reduce operations.

We distribute the Location Service computation across four

servers, each one having 64 CPUs at 2.20 GHz, 8 cores per CPU,

800 GB of RAM, and running CentOS 6.9. These servers are part of

a cluster shared by many applications. One server hosts the Spark

manager, while the other three host the Spark executors. We con-

figure Spark to use 12 executors, each one with 20 GB of RAM and

4 cores. The Spark manager distributes executors across the three

servers based on resource availability. Due to the shared nature

of the cluster, we don’t allow more than one Spark environment

running at the same time. Hence, we choose the amount of input

data such that the Location Service completes its execution before

the next batch, even in the presence of failures, and the percentage

of video QoE data without network location is acceptable (3% to

5%). Finally, we use the Spark capability to automatically restart

failed tasks. Currently, a failure of the entire job requires manual

intervention from an operator. We leave the Location Service fault

tolerance as future work. Location Service is implemented with less

than 1,000 LoC, it runs on a modest shared generic computation
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infrastructure, and its average computation delay varies between

17 and 25 minutes.

5 EXAMPLE USE CASES AND ANALYSIS

In this section, we demonstrate three examples of use cases for

which VideoNOC can provide insightful results: i) relative video
service usage and impact, ii) insights into video service design, and iii)
understanding the impact of network factors on video QoE, namely
mobility and higher video demand per cell. We also compare our

findings to a 2011 study [24], to point out the evolution of video

streaming in cellular networks over the years.

Data set: The data set from which we draw sample network

locations used for this analysis comprises of logs spanning two

weeks in 2017. The data consists of 272 million anonymized sessions

from a sample of 15 different CPs amounting to 5,070 TB of data.

We filter out sessions shorter than 2 minutes in duration to remove

potential skew due to auto-play feature, users that browse or sample

videos, and overall startup effects (e.g., initial buffering, which we

discuss separately in detail).

We group CPs by the estimated broad type of content served –

user-generated content (UGC), premium video-on-demand (VoD)

and live TV (Live) content. If a CP uses HTTPS, we refer to it by

appending an ‘s’ to the end of the name. UGC services are streaming

predominantly user-generated videos with a varying proportion

of commercial videos and advertisements in up to 4K resolutions.

Most of them are considered online social networks. VoD CPs are

large paid streaming services with movies and shows offered in

various quality levels up to 4K resolution, either under independent

subscription or as a part of the home TV services. Live CPs offer

live TV streams from large TV and sports broadcasters.

5.1 Insights into relative video usage

As video services and their delivery evolved over the past several

years, one example use case is to consider the relative demand, effi-

ciency and popularity across CP categories and network locations.

Relative contribution to overall video demand: Consider-

ing the contribution to the overall number of video sessions

streamed, we observe that the top 5 CPs from our sample set gener-

ate 95% of video sessions. They consist of UGC and VoD CPs, with

majority being UGC. Other VoD CPs generate 4.5% of video ses-

sions, and Live CPs remaining 0.5%. While Live video is currently a

minor contributor to video sessions in cellular, this is an emerging

category that may grow in the future. The relative contribution in

terms of data demand is similar as the same top 5 CPs contribute

93.5% of the overall data demand. This is qualitatively similar to

the 2011 study [24]. Given the significant impact of these top 5 CPs,
optimizing these services for cellular networks would have a large
overall impact on the efficiency of network resource utilization.

Understanding efficiency of video content delivery:We con-

sider the delivered video bitrates and their relationship to the over-

all video session throughput (ST) to understand the efficiency of

delivery vs. QoE. We focus on a subset of CPs for which we can

estimate the available bitrates using request URIs. Figure 6 shows

the medians of average per-session bitrate and ST from a sample of

CPs and network locations. The bitrate ranges indicates significant

increase compared to the 2011 study, which found that most video
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Figure 6:Normalizedmedianper-session average bitrate and

session throughput from a sample of CPs and network loca-

tions. A value of 1 corresponds to 1.5 Mbps.

sessions were encoded at 255 Kbps. This improvement comes with

transition from 3G to LTE and from progressive download (PD) to

adaptive bitrate (ABR) streaming technologies. Another aspect of

video evolution compared to 2011 study is that nearly all detected

video sessions use some form of ABR, with PD diminished.

However, the question arises whether the high bitrates are rea-

sonable. Video sessions in cellular networks are typically streamed

to small-screen devices, such as phones. Existing studies show that

on small screens, bitrate levels of 1 to 1.5 Mbps with state-of-the-

art encoding techniques can provide a high visual quality with

a diminishing utility beyond that point [42]. Delivering excessive

video bitrates wastes data allotments and network bandwidth, some-

thing of utmost importance under limited radio spectrum. The data

reveals that most of the sample CPs actually exceed the median

per-session bitrates of 1.5 Mbps, shown as the normalized value

of 1 in Figure 6, making the excess bandwidth use more of a rule

rather than an exception.

Further compounding the problem, ST often exceeds the bitrate

by a significant margin, indicating that many services deliver much

more data than the useful encoding bitrate, with overhead reaching

up to 50% (Figure 6). This comes as a consequence of several pos-

sible issues: i) use of less efficient encoding, such as Constant Bit

Rate (CBR), as opposed to Variable Bit Rate (VBR), ii) less efficient

transport and packaging schemes, which in cases of separate audio

and video streams could lead to more overhead, iii) various chunk

duplication and replacement behaviors (discussed later in detail),

etc. We find one or more of these issues present in many CPs.

On the other hand, we can see that some services have minimal

overhead and tend to stream appropriate bitrates for small screens.

It is encouraging to see that the service designs conscientious of

cellular environment and device context are starting to appear

among CPs. These observations raise a question of whether the surging
demand for video bandwidth could be significantly curbed by simply
considering screen size of mobile devices, and carefully selecting more
efficient methods, thereby reducing the obvious resource waste. The
findings present a strong argument in favor of utility-based adaptation
for more efficient use of network resources.

Cell coverage: We observe the proportion of cells with traffic

from each CP, out of the total number of cells in our sample dataset.

This offers an insight into the network coverage across CPs. We

observe that a small number of CPs can be observed in a majority

of radio cells, with the top top 5 CPs cumulatively covering 99%

of cells. This suggests that thoroughly understanding QoE for those
CPs could provide a representative view of video QoE across different
parts of the entire network. Combined with the highly skewed demand,
it may be possible to use sampling to improve speed and reduce the
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Table 3: Service design aspects across CPs

Bitrate Number Chunk Chunk Estimated buffer

CP range of bitrate duration IAT in OS1 in OS2

(Kbps) levels (s) (s) (s) (s)

UGC1s - - - 4.7 35 35

UGC2 - - - 3.2 23 25

UGC3s - - - 3.5 25 25

UGC4s - - - - 22 22

UGC3 254-1291 4 3.3 0.7 - -

VoD1 - - - - 60 27

VoD2 130-2664 11 10,5 7.8 20 52

VoD3 266-4681 8 4 3.6 10 16

VoD4 268-2408 6 4 3.9 14 25

VoD5 232-3219 7 4 3.5 45 29

VoD6 194-5901 11 3,10 8 20 35

VoD7 264-3875 8 9 8.7 12 25

Live1 175-3404 7 8 7.4 10 12

Live2 171-3402 7 8 7.7 13 13

Live3 153-2744 15 6 5.6 16 7

processing cost of video QoE data. However, it is still valuable to study
other CPs, from the perspective of interaction with most popular

ones and general traffic, and because their relative importance to

users might be higher, as these are generally premium services.

5.2 Insights into video service design

Another example of VideoNOC use is to uncover design choices

observed for various CPs, focusing on those that have high impact

on QoE and efficient use of resources in cellular network (Table 3).

Bitrate range: We report detected Bitrate range across aNumber
of bitrate levels for CPs in the dataset. While most CPs provide a

similar lowest bitrate (near 200 Kbps), the range drastically varies,

with some CPs exceeding 4 Mbps at the high end. While some CPs

deliver all available bitrates over cellular networks, others do not

deliver the highest bitrates in cellular networks in any appreciable

amount (e.g. Live1, Live2, VoD4, VoD5). We confirm that this is

the CP design having nothing to do with network performance by

finding that the highest requested bitrates across cells with low,

medium, and high load, are generally the same. This points to a

form of internal control or cap on bitrates in cellular, which we

further confirm by manual inspection of mobile apps. Such controls

are implemented either using CP-tailored manifest files for cellular
or application settings (e.g. by settings in user preferences).

We further find it peculiar that there is no apparent rule fol-

lowed by CPs on the number and granularity of bitrates offered.

For approximately similar range, there could be a large difference

in number of bitrates. One reason could be differences in streaming

technologies across devices for the same CP leading to different

encoding requirements and CDN storage management. Another

reason could be differences in bitrate adaptation strategies where

more bitrates may achieve some design objective for the CPs, such

as smoother visual quality transitions during adaptation.

Chunk duration: Chunk duration in Table 3 shows the duration
of a video chunk obtained by manually inspecting the manifest

file for some of the services. It appears that there is a tendency

where Live services use longer chunks than VoD services. These

choices might be the remnants of the legacy recommendations

in HLS, however, it is not possible to determine the true reason

from network traffic. Longer chunks might, however, reduce the

flexibility and agility of the player to adapt to rapidly changing

network conditions, often found in cellular networks.

For the benefit of deriving automated methodology in VideoNOC,
we compare these values to the median Chunk inter-arrival time
(IAT) observed on the network for each video service. The values

are very close to the actual chunk duration for the services. This

indicates a viable possibility for automatically detecting chunk dura-

tions from their inter-arrival times in VideoNOC, thereby removing

the need to manually inspect these services.

Buffer levels: Another source of network overhead in video

streaming can be inadequately sized video buffer. In HAS, players

usually fill the video buffer and then enter into the steady state

phase where they maintain the buffer level by fetching another

chunk once there is space in the buffer. Downloading a large amount

of video, especially during the startup buffering phase, can lead to

waste of network bandwidth in case of abandonment. Past work

has indicated that a large number of users tend to sample video

content [17], or do not watch the entire content [24].

To assess the buffering behavior at large, we use the follow-

ing methodology, which is intended to estimate average buffering

across sessions, as opposed to precisely determine the maximum

buffer size in each player. For each CP, we estimate and compare the

average amount of content (in seconds) buffered in the first minute

of the video session, as we provide per-minute periodic reporting in

VideoNOC. The buffered content (B̂star tup ) is estimated by dividing

the amount of data downloaded in the first minute (Dstar tup ) of

the video session by the average bitrate (
¯br ) of the entire session.

B̂star tup =
Dstar tup

¯br
(4)

In case of CPs for which we do not have the bitrate, we use

ST as an estimate of the bitrate. The median of B̂star tup across

all sessions of a CP is calculated and shown as Estimated buffer
(Table 3) for OS1 and OS2. For encrypted services, we are not able

to detect the OS type and hence the same values are shown for both

OS. We exclude UGC3 from this analysis as we found that this CP

pre-loads multiple videos in background before users specifically

select to play a title.

For the same CP, we find differences in the video buffer content

across OS’s. This indicates different design choices across OS’s. The

video buffer for Live content is smaller than for VoD andUGC, which
is to some degree expected, as Live services are streaming content

generated in real time and it is not desirable to have a long lag to real

time. For most CPs, the buffer is less than 30s. However, we also find

larger buffers for some CPs (e.g., 60s for VoD1 on OS1), indicating

non-trivial network overhead due to abandonment in these CPs.

This points to the need for exploring smarter strategies to determine
the buffer size, especially in the beginning of the video playback, in
order to minimize network overhead due to users sampling videos.

Bitrate usage and switching variability across OS: Different

buffering strategies by OS prompt a closer examination whether

other design aspects differ across OS’s, resulting in different QoE.

We look deeper into variability in bitrates and switching using two

example services, Live3 and VoD2.
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Figure 7: Variability of QoE metrics across OS for Live3 and VoD2

Table 4: Network overhead due to chunk replacement

% sessions mean CR % sessions CR overhead

CP w/ non-zero overhead w/ ≥ 20% CR (% data)

CR overhead (% bytes) overhead

UGC3 79.99% 13.68% 26.48% 9.14%

Live1 73.29% 8.68% 13.42% 5.42%

Live2 63.89% 7.75% 12.79% 4.95%

VoD5 60.52% 6.38% 12.66% 7.80%

Live3 60.07% 6.55% 9.30% 3.58%

VoD6 41.14% 8.37% 17.30% 4.62%

VoD7 38.13% 5.46% 10.06% 5.11%

VoD2 25.93% 4.03% 7.65% 4.54%

VoD3 20.07% 2.75% 4.79% 4.75%

VoD4 3.02% 0.31% 0.55% 1.30%

Figure 7a shows the distribution of bitrates played by Live3 on

OS1 and OS2. Nearly 70% of Live3 content on OS2 is streamed at an

average bitrate of 2,487 Kbps, whereas 84% of the content on OS1

is streamed at an average bitrate of 864 Kbps. This suggests that

sessions on OS2 may experience higher video quality than OS1
3
.

However, Live3 sessions on OS2 have a higher number of bitrate

switches per minute as compared to OS1. This seems to suggest that
higher bitrate switching on OS2 could be because trying to stream
video at higher bitrate leads to instability as available bandwidth
varies. We also plot the bitrate switches per minute for Live1 in

Figure 7b to show a video service in which the switches per minute

are similar on both OS platforms.

Interestingly, we observe a contrasting example in the case of

VoD2, where there is similar variation in streamed bitrates across

the two OS, but streaming at higher bitrate does not lead to higher

bitrate switches. As shown in Figure 7c, VoD2 sessions on OS2 are

streamed at higher bitrate than sessions on OS1. However, unlike

Live3, the bitrate switches per minute for VoD2 sessions are lower

on OS2 as compared to OS1 (see Figure 7d), despite streaming at a

higher bitrate on OS2.

These examples suggest that it is not necessarily the network con-
ditions alone, but also player-specific design choices such as default
bitrate levels and bitrate adaptation algorithm that significantly im-
pact the QoE of a video session in practice.

Chunk replacement (CR) overhead: It is common to observe

multiple chunk requests with the same chunk identifier, but dif-

ferent bitrate. We call this phenomenon Chunk replacement and

3
Video quality is also impacted by the encoding technology used. Some encoding

technologies are more efficient than others and can provide higher quality at the same

bitrate level

Table 5: Impact of mobility and demand on session through-

put for a subset of network locations

Impact of mobility Impact of demand

CP ∆mobil ity % mobile sessions ∆hiдher
OS1 OS2 OS1 OS2 OS1 OS2

UGC1s -6.5% -6.5% 13.7% 13.7% -27.8% -27.8%

UGC2 2.6% -0.6% 7.4% 5.7% -16.2% -23.2%

UGC3s -1.9% -1.9% 7.8% 7.8% -24.1% -24.1%

UGC4s 13.8% 13.8% 4.4% 4.4% -43.6% -43.6%

UGC3 -1.4% -1.4% 6.6% 6.6% -19.7% -19.7%

VoD1 -7.6% -2.2% 11.3% 14.4% -7.2% -2.9%

VoD2 -1.2% 5% 10.8% 15.5% -32.6% -24.6%

VoD3 -5.6% -5.2% 13.6% 17.1% -41.2% -35.3%

VoD4 -1.9% -0.2% 12.3% 17% -6.2% -3.5%

VoD5 0.4% -1.6% 13.7% 17.6% -1.4% -3.1%

VoD6 -5.9% -6.1% 11.7% 18.6% -19.6% -17.8%

VoD7 -1% -2% 9% 15.3% -2.5% -22.3%

Live1 0.2% 0% 10.9% 20.5% -2.4% -3.2%

Live2 -0.3% -0.6% 14.4% 20.3% -9.2% -10.4%

Live3 0.2% -13.8% 10.9% 16.2% -12.4% -25.8%

it can happen due to several reasons, including (i) player trying

to improve user experience when network conditions allow, (ii)

recovering from various errors or overly aggressive but aborted

attempts for high-quality chunks, (iii) ensuring consistent transi-

tion between bitrates (frame alignment), and possibly others. This

behavior has been observed in previous studies [35, 36], but has

not been quantified at large scale. Note that replaced, or otherwise

duplicated or repeated chunks, are important from the perspective

of both the MNO (represent wasted network resources) and end

user (represent waste of a limited data plan). We define CR over-

head as the percentage of data in a video session transmitted due

to replaced chunks.

Table 4 shows the CR overhead for video services in which we

could read the chunk identifier and hence detect chunk replacement.

A large number of sessions, as high as 80% for UGC3 have non-zero

chunk replacement overhead. A non-zero chunk replacement over-

head can still be explained by the fact that video players typically

start by downloading lower quality chunks to quickly fill up the

video buffer and replace them later with high quality chunks, given

sufficient network bandwidth. However, a significant number of

sessions (26% for UGC3) have chunk replacement overhead greater

than 20% which is non-trivial. The overall network overhead due to

chunk replacement is quite high (up to 9% for UGC3). This points to

the need of looking into optimizing the trade-off between improved

user experience and network overhead.
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5.3 Impact of mobility and demand

The final example use case shows the impact of two important

factors on video QoE, namely mobility and per-cell demand, as

both are highly relevant to cellular networks.

Impact of user mobility: In a cellular network, user mobility

often leads to hand-offs between cells and eNodeBs. While the dura-

tion of the hand-off itself is short, the reduced radio signal strength

at the edges of a cell can cause degradation in the video QoE. We

study the impact of user mobility on video session throughput (ST ),
which is most directly affected by varying radio signal.

We infer mobility in a video session by observing the number of

eNodeBs in the session. We label a session mobile if there were at
least three different eNodeBs encountered during that session. We

use three eNodeBs as an indicator of mobility instead of two since

a stationary UE could be handed-off to a cell in an adjecent eNodeB

due to variation in received signal strength. We label the sessions

with a single eNodeB as stationary, and ignore sessions with two

eNodeBs in our analysis. We then calculate the relative change in

median session throughput of stationary and mobile video sessions,
referred to as ∆mobility , for every CP:

∆mobility =
ˆSTmobile − ˆST stationary

ˆST stationary
× 100% (5)

Impact of mobility is shown in Table 5 as ∆mobility with percent-

age of mobile sessions for the CPs on the two OS platforms. The

key high level observation is that the average values of ∆mobility
are low, indicating that user mobility does not significantly impact

video QoE. The reduction in ST predominantly in the range of up to

7% should not impact QoE as the distance between adjacent bitrates

is typically by the factor of 1.5 to 2. However, the non-negligible

percentage of mobile sessions (up to 20%) might warrant closer

inspection to determine precise impact. The relatively low impact

(and in some cases improvement) in ST could be attributed to a com-

bination of potential reasons: (i) the video buffer can compensate

for the temporary degradation in throughput during hand-off, and

(ii) mobile devices are outdoors or in vehicles where radio signal

typically has better quality than indoors.

Impact of higher video demand: The last-mile cellular radio

link is one of the most challenging network environments, with

frequent fluctuation in signal strength, quality and available band-

width. Therefore, contention for resources is expected, and we

examine its impact on video QoE, again considering change in ST
ia subset of cells. We use the following heuristic to infer higher
video demand in a cell. For every cell, we use 15-minute time bins

and label the video demand in the cell as either higher or lower. A
cell is considered under higher demand in the current time bin, if:

• there are at least 10 video sessions during that time bin, and
• at least 50% of the video sessions have ST less than the median ST
for the corresponding CP
We compute the relative change in median session throughput of

sessions under higher demand cells ( ˆSThiдher ) and sessions under

lower demand cells ( ˆST lower ).

∆hiдher =
ˆSThiдher − ˆST lower

ˆST lower
× 100% (6)

This heuristic allows us to consider relative impact of video

sessions on each other, and alleviates the need to consider busy

hours, radio characteristics, or resource utilization. However, the

total load of those cells is not driven by detected video streams,

but overall traffic, Table 5 shows the Impact of demand as ∆hiдher
values for different CPs. Most of the CPs are significantly impacted

by higher load with ST dropping by as high as 40% for UGC4s, but

generally in the 20%-30% range. We also observe that the impact

is different across CPs. This can be attributed to the difference in

encoding bitrates, adaptation algorithms, presence of bitrate control,

and known instability issues when adaptive players compete [13].

There is a strong indication that CPs that normally limit the bitrates

in cellular such as VoD5 and Live1 are not highly impacted by

increased demand.

6 RELATEDWORK

QoE inference for operators: Existing work on QoE estimation

from network measurements can be broadly divided into two cat-

egories. One category correlates network QoS with video QoE

metrics using machine learning-based techniques. Consequently,

these methods require ground truth on QoE for initial training of

models. OneClick [21] and HostView [31] propose obtaining the sub-

jective ground truth QoE through user feedback. Prometheus [12]
and Orsolic et al. [38] suggest using instrumented clients to ob-

tain the objective video QoE metrics. Dimopoulos et al. [23] and

BUFFEST [33] inspect QoE metrics sent by the player to the CP

to correlate them with network-level QoS metrics. However, the

strong reliance on ground truth QoE metrics makes it difficult for

NOs to implement this approach in practice.

Another category of QoE estimation approaches models video

sessions based on the network traffic dynamics of the underlying

video streaming protocol. This kind of QoE inference has been

proposed for HTTP progressive streaming using network logs col-

lected at TCP layer [39] or HTTP layer [22]. In our recent work,

we provide a video session modeling approach for HAS video to

estimate individual session QoE metrics using HTTP logs [35]. Our

underlying QoE inference approach in VideoNOC is also based on

an approach similar to this technique with addition of using ses-

sion throughput for inferring encrypted video QoE. In addition to

video, several efforts exist to infer QoE from network data for other

applications such as web browsing [16, 41].

Video performance characterization: Several activemeasure-

ment studies exist to characterize performance of the commercial

video players [14, 36, 43] and CDNs [10, 11]. Similarly, large-scale

measurement efforts to characterize video QoE have also come

using performance data collected passively from commercial video

players [29], CDNs [44] or both [26]. VideoNOC is similar in spirit

to these studies but provides a unique MNO’s perspective of video

performance. Closest to the insights provided by VideoNOC is the

work by Erman et al. [24] on characterizing cellular video per-

formance. We provide a fresh take on their findings showing the

cellular video evolution in the past few years as well as several

additional insights such as impact of mobility and high demand on

mobile video performance.

In-network optimizations: Chen et al. [20] present an HAS-

aware scheduler at eNodeB to improve fairness among different
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HAS streams. Existing works [18, 32] suggest network-assisted

bitrate adaptation in HAS. We believe that using VideoNOC system

can help find network locations needing attention and assess the

impact of in-network modifications after deployment.

7 CONCLUSION AND FUTUREWORK

We present the design and implementation of VideoNOC, a pro-

totype platform for video QoE monitoring in a cellular network.

By addressing the key challenges, we demonstrate feasibility of

large-scale video QoE inference and its benefits in understanding

and improving adaptive video streaming in cellular environments.

While our QoE metric estimation techniques are applicable to any

type of network where passive measurements of HTTP/S traffic

are available, we address specific scalability and cross-layer chal-

lenges to build a practical and efficient system on top of the existing

cellular network architecture. The resulting data set, Mobile Video
QoE Metrics, can be used to analyze interactions between the net-

work and video streams, leading to insights on how to improve

current and build better networks and video services in the fu-

ture. Our future work will explore enriching the existing QoE data

with transport-layer and relevant RAN KPIs (e.g., signal quality,

channel utilization) for a deeper investigation into the root causes

of performance problems, explore edge processing of RAN data,

QoE inference on encrypted video traffic, and cooperation between

MNOs and CPs.
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