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Abstract—Multimedia streaming is a major mobile appli-
cation, accounting for more than half of total mobile traffic.
Streaming applications usually have a static buffering strategy.
For example, buffer size is limited to x minutes of the stream,
where x is optimized to provide the best trade-off between mini-
mizing stalls and limiting waste of user’s bandwidth and energy
resulting from user abandonment. We show that such strategies
based on information available on the mobile device alone do
not work well when network conditions change dynamically,
e.g., connectivity degrades due to congestion. We propose an
alternative strategy using the framework called TANGO, based
on a novel idea of cooperation between cellular network and
mobile devices. By monitoring real-time network conditions and
continuously predicting user location, our system is able to predict
connectivity degradation in the near term. In such events, a
notification is sent to the mobile device so that the streaming
application can initiate a mitigation action, such as to pre-
cache more content. In simulations based on real user traces, we
found that TANGO reduces pause time by 13–72%, significantly
outperforming DASH, which is the current state of the art.

I. INTRODUCTION

Multimedia streaming has become a major application for
mobile users. Cisco reports that mobile video traffic accounted
for 55% of total mobile traffic in 2014 [1]. In 2012, 70%
of Pandora’s usage was from mobile devices [6]. However,
the growth of mobile network capacity is not keeping pace
with the growth of traffic. Cisco estimates that mobile traffic
will increase 10-fold between 2014 and 2019. On the other
hand, the observed growth in network capacity has been much
slower, at 4-fold per 5 year on average [2]. Therefore, network
congestion will be more and more common in the future, and
mobile applications will need better mechanisms to mitigate
the problem.

Streaming applications usually limit the download rate by
setting a maximum buffer size and/or limiting the download
rate. A buffer that is too large would result in unnecessary
energy and bandwidth usage due to unpredictable user aban-
donment. A buffer that is too small would result in interrupted
playback in the event of short-term network connectivity
problems. Existing systems such as adaptive bit-rate schemes
use a “static” buffer and try to keep the buffer full by adapting
the bit rate according to current network conditions. In this
paper, we argue that the static buffer approach has fundamental
limitations and is not adequate to address network connectivity
problems. If the network condition is good (the common case),
the buffer should be small. If the network condition is bad, the
buffer should be large—directly proportional to the duration
for which the network is going to be in the degraded state.

However, the mobile device alone has no way of predicting
future network quality. The cellular network, on the other hand,
has a global view of the network. It knows which areas in
the potential path of the streaming user are currently having
network issues. Thus, for a smooth streaming, we need a buffer
of dynamic size. To support dynamic buffer, a cooperation
between the mobile device and the cellular network is needed.
This paper proposes a novel idea—building a cooperation
framework to support dynamic playback buffer for improving
the performance of streaming applications.

Specifically, we design TANGO, a service that performs
real-time data analysis in order to give streaming applications
an early notification of impending connectivity degradation,
so that the applications can initiate a mitigation action, such
as to pre-cache more content. In effect, we turn on its head
two operational principles today. First, we enable cooperation
between the cellular network and the mobile device through
our framework, while current practice does not allow for such
cooperation and the mobile device considers the cellular net-
work to be a “dumb pipe”. Second, we use this cooperation to
allow proactive handling of network condition changes, while
the overriding operation mode today is through adaptive bit-
rate streaming which reacts to the changing network condition
in the hope that the condition will change slowly. Network
conditions do change quickly in many scenarios, such as, flash
crowds or changing spots with poor signal strength.

An important component of TANGO is user location pre-
diction. Mobility prediction has been studied in several works,
with satisfactory results [34], [30], [10]. We implement and
evaluate the system using a simple mobility prediction algo-
rithm, based on current and previously connected cell sectors,
since this information is readily available, without incurring
additional cost, say for GPS measurements. More sophisticated
location predictors can be plugged in and potentially result in
greater benefits.

We design and implement the two primary components
of the system—data analysis and event notification (part of
TANGO), and the attendant mitigation action (part of the
application). The data analysis considers real data collected by
a cellular service provider at the edge elements of its network,
the Radio Network Controller (RNC). Information contained in
the traces includes actual download/upload rate and current cell
sector. This data is finely granular and comprises per mobile
device data.

We evaluate TANGO using simulations, using the afore-
mentioned data traces as well as behavior of a real streaming
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Fig. 1. Architecture of a UMTS data network.

application as the basis. The application used is Pandora, which
provides an online radio service, as well a popular javascript-
based video streaming client. Effects of stalls are quantified
and measured as pause time. We compare TANGO with the
baseline approach and DASH [27]. In a simulation with audio
streaming users, we found that pre-caching reduces pause time
by 13–72%, outperforming DASH by a significant margin,
while maintaining higher stream quality.

The rest of the paper is organized as follows. Section II
provides background on cellular network. Section III presents
the pre-caching service. Section IV presents the experimental
evaluation. We follow this with related work and then conclude
the paper.

II. BACKGROUND

In this section, we first describe the basics of 3GPP
cellular architecture and then provide information about the
data set used in our evaluations. The description here applies
to 3G/High-Speed Packet Access (HSPA) network, and with
some slight modifications to 4G LTE networks as well.

Figure 1 shows the key components of a typical UMTS
data network. It consists of 2 major components: the Radio
Access Network (RAN) and the Core Network (CN) (or Packet
Core). The mobile device, called User Equipment or UE in
UMTS terminology, is connected to one or several cell sectors
(also referred to as cells) in RAN. This set of cells is called
the active set. Only one cell in the active set is actively used
for communication at a time. This cell is referred to as the
primary cell. A physical base station (called NodeB in 3G
and eNodeB in LTE) can have multiple cells, which provide
radio resources to UEs for wireless communications. Cellular
data traffic from several NodeBs are then passed to the Radio
Network Controller (RNC), which manages handovers, and
scheduling of wireless resources among the NodeBs under its
control. The RNCs connect to Serving GPRS Support Nodes
(SGSNs) at the core network. The SGSNs are connected to
the external networks, such as the Internet, via Gateway GPRS
Support Nodes (GGSNs). When a UE connects to the network,
it establishes a Packet Data Protocol (PDP) context which
facilitates tunneling of IP traffic from the UE to the peering
GGSN using GPRS Tunneling Protocol (GTP) (see [13] for
details of the UMTS network).

We evaluate TANGO using real-world cellular traffic data
collected at the RNC in a 3G RAN from a tier-1 cellular
network carrier. All device and user identifiers are anonymized
for our analysis. Details of the dataset are provided in Section
IV.

III. DATA PRE-CACHING SERVICE

In this section we describe the data pre-caching service,
which notifies applications when connectivity is predicted to
be poor in the near future, based on the user’s mobility pattern
and current load in the network.

A. Overview

A common problem in cellular networks, especially in
dense regions is network congestion. A cell’s available wireless
bandwidth is limited and is shared among users connected
to that cell. When the total bandwidth demand exceeds the
total available bandwidth, we call that cell congested. Adding
more capacity in the form of more cell towers, or more
number of sectors in an existing antenna, or increasing the
transmit/receive power of some antennas are all used today to
relieve congestion. However, it is no wonder that these do not
completely solve the problem, as seen in the growth of mobile
traffic outpacing the growth of network capacity [1], [2].

In addition to congestion, some cells provide persistently
lower data rates compared to other cells. This could be due to
many reasons such as misconfiguration of antennas, a nearby
source of interference, buildings or landscape obstructing the
radio signals, or partial hardware failure.

Rather than trying to prevent congestion or the cause
of the inferior data rate itself, this service aims to notify
the application shortly before the user enters the congested
area. Applications can take advantage of this information and
respond in various ways—e.g., by pre-caching content that the
user is expected to use in the near future (this is the mitigation
strategy that we experiment with) or switching to a different
carrier or base station within the same carrier. Examples
of applications that can use pre-caching as the mitigation
action include audio/video streaming (which we use in our
experimental evaluation), GPS navigation, and web browsing.
These applications have a common property that the future
content is known or predictable, to varying extents, and can
be downloaded at any time, but in order to conserve bandwidth
and/or energy, today’s practice is to not predownload content
too far in advance. This usual mode of operation works well
when network interruptions, if any, are short. However, when
the user enters a congested cellular area or a cell with inferior
data rate, the amount of buffered content may not be enough
to provide uninterrupted user experience. This is known from
prior reports, e.g., [22], [12], and we also empirically see
this in our experiment where the pause time exceeds 2% of
media stream time for a generous fixed buffer size of 10 songs
(Figure 3).

Instead of relying on such one-size-fits-all strategy, this
service enables applications to utilize different strategies in
different network conditions. In general, the pre-caching ser-
vice can be used whenever a connectivity degradation can be
predicted to occur in the near term, such as with lookaheads
of a few minutes. This can include situations where the user
is entering a tunnel or moving out of the coverage area of her
cellular carrier, for example.

In order to provide this service, TANGO needs to be able
to predict user location in the near-term future and know the
areas that are currently congested as well as cells identified as
providing inferior data rates. Congestion information requires
real-time network data, as congestion changes dynamically. As
we will show in the Section IV-B5, the set of cells providing
inferior data rates also change over time. Therefore, the service
will require real-time network data from network elements.

Figure 2 shows the overview of the service. During network
operation, device location and network load data are collected
by the network elements then stored in a database. During
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offline training, location data from all users in the database
is used to train the location prediction model. In the online
phase, the application first registers with the service. Then,
the device’s past and current location is used to continuously
predict future location. If a predicted location is currently
congested, a pre-caching alert is sent to the application. The
application can then decide how much data to pre-cache based
on current buffer level, battery level, etc. We discuss location
prediction in the next section.

B. Location Prediction

Today, device’s location information is available from
currently connected cell and GPS measurements. GPS gives
more fine-grained location information than current cell does.
However, in the common case where GPS is not already being
used, using GPS will result in significant energy overhead.
Furthermore, for the pre-caching service to be useful, we only
need to know coarse-grained information, i.e., which future
cells the device will be connected to, since congestion is
determined at the granularity of a cell. Therefore, we opt for
the current cell as well as past cells as the data source for
location prediction.

Both the device and the network are aware of the current
primary cell to which the device is currently connected. In our
case, we implemented the predictor that uses network data as
input, since prediction results will need to be combined with
network load data later. Specifically, location predictor’s input
data consists of the current primary cell as well as the history
of past primary cells of the specific device whose location
it is trying to predict. Because users with high mobility can
move to multiple cells within a short amount of time, instead of
predicting a single cell that the user will move to, the predictor
estimates the probability that the user will enter a cell C within
a specific amount of time, separately for each nearby cell C.
As an optimization, the prediction is only needed for cells that
are currently congested, or known to be providing inferior data
rates.

Symbolically, the predictor works by estimating

P (C ∈ S|Ct, Ct−1, . . . , Ct−m) = Freq(C∈S,Ct,Ct−1,...,Ct−m)
Freq(Ct,Ct−1,...,Ct−m)

from the training data, where C is a future cell, S is the set of
all cells the user will enter in the next u minutes, Ct is the cur-
rent cell, Ct−1, . . . , Ct−m are the history of past cells, and m
is the length of cell history. Freq(Cx, Cx−1, . . . , C1) denotes
the frequency (count) of any user visiting cells C1, C2, . . . , Cx,
in that order. Note that this prediction is about whether the
user will enter the cell C in the next u minutes, and not about
whether C will be the next cell. During training, each observed
cell sequence of length m+1 (for the denominator) and m+2
(for the numerator) results in the frequency corresponding to
that cell sequence increasing by one. The model’s parameters
m and u can be set by the user.

Intuitively, given past trajectory, the predictor answers the
query “will the user enter cell C in the next u minutes?” This is
done by keeping count of how many times a user enters cell C
within u minutes after that exact trajectory. The counts are kept
separately for each trajectory. Note that the time component
of the past trajectory is not considered by the model. This
algorithm is extremely simple, and is not designed to improve
the state of the art. However, more complex algorithms based
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Fig. 2. Overview of pre-caching service in TANGO using network elements
that are present in 3G or LTE networks. Dashed lines and dashed boxes
represent workflow that only occur during offline training.

on similar input data can be readily plugged in, and the service
will potentially benefit from improved accuracy. This benefit
is quantified in Section IV-B1.

As new base stations are added and old ones removed from
the network, the location predictor will need to be retrained.
Changes in traveling patterns can also cause degraded predic-
tion accuracy. The prediction accuracy should be monitored
and another offline training can be triggered once the accuracy
falls below a set threshold.

C. Deployment

In this section we discuss the various components that
are needed to provide the service, and how they can be
implemented in a real cellular network.

The service runs on dedicated servers separate from the
existing cellular network components, so as not to impede
the time-critical cellular network operations. These servers
need access to real-time data about the device location and
network load. In 3G networks, network data from base stations
is aggregated at the RNCs, where one RNC serves a set of
geographically close by base stations. Therefore, it is natural
to place a database server at the RNCs, in order to reduce
communication latency. In 4G LTE, there are no RNCs;
instead, data are collected by the eNodeB’s. In this case, the
real-time data from the eNodeB’s needs to be sent directly to
the database server. Since cellular networks can cover a large
area, often a whole country, there should be multiple database
servers partitioned by location, in order to distribute the load
and reduce latency. Each database server is then responsible
for storing data corresponding to network operations around
it. Since in the online phase the service needs to access data
stream as it is generated, the data needs to be pushed from the
database server rather than having the service pull the data as in
traditional database systems. For this task we need a streaming
data management system, which can run a continuous query
on data in motion until the query is explicitly uninstalled.

Having each server provide service for a specific area
means that the device needs a way to select the correct server
based on its current location. This can be done by having
a central “directory server” which directs the device to the
correct server each time it uses the service. This directory
information can be cached in the device for later use in order
to reduce the amount of communication as well as the load on
the directory server.

In Section IV, we measure the amount of additional load
on the network due to a service in terms of the amount of data
involved and the amount of computation needed.
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IV. EXPERIMENTS

We evaluate the effectiveness of the data pre-caching
service based on real cellular traces from the 3G network of
a major US-based cellular network service provider.

A. Data Source

The traces used for all experiments were collected at a
RNC of the service provider over the period from February
2013 to November 2014. All device and subscriber identifiers
from these traces were anonymized. The dataset, with the
device ID, timestamp, and event type as the unique identifier
(primary key), contains various performance data and events
in the tabular format, with each type of data having its own set
of metrics as the columns in addition to the common metrics.
The common metrics are the device ID, timestamp, and cells
that the device is connected to. Examples of recorded data
include download and upload throughput and uplink power,
reported at 2 seconds interval, and event-based data items such
as, connections and disconnections, handover events, as well
as other low-level radio protocol events. There is a second kind
of data, which is specific to a cell, and for that the cell ID,
timestamp, and event type form the primary key. An example
of this type of data is the number of active devices in the cell.

B. Experiments

We designed a simulation experiment mimicking the real-
world scenario to evaluate the costs and benefits of data pre-
caching in an audio streaming application. The prediction
performance as well as overhead of the location predictor is
evaluated. Finally, we investigate cells with chronically poor
connectivity present in the traces.

1) Reducing stalls in audio streaming: This experiment
aims to evaluate if the pre-caching of TANGO helps reduce
stalls in an audio streaming application. This would effectively
translate to increased capacity of the network for handling
audio streaming users, while keeping the quality level the
same. The cutoff is provided by the buffering time as a
percentage of the total playback time, which for an acceptable
quality of use, needs to be kept below a threshold (typically 1-
5%, depending on kind of audio and kind of users). We picked
streaming audio because online radio services are becoming
increasingly popular with Pandora and Spotify having become
household names in the US.

We measure the buffering time by running a simulation,
with the trace data coming from a real cellular network.
An area in the real network is selected, and the cells in
the area are simulated. A varying number of emulated audio
streaming clients add traffic in addition to existing background
traffic with simulated congestions, and the audio pause time
is measured. Audio pause time is defined as the total listening
duration (say, A), minus the duration where audio is actually
played (say, B), minus the initial buffering time (say, C). The
quantity A − B gives how long the user has spent waiting
for the player to buffer content, thus a smaller value is better
for user experience. The quantity C is subtracted from that
because that is the initial buffering when the user initiates the
request for the audio stream. Presumably, this delay is less
annoying to the user than a delay in the midst of listening.

We selected an area in downtown San Francisco, USA to
be the simulation area. The area is 1.66 miles long along north-
south and 1.91 miles long along east-west. All cells in the area

(>1000) are included. Each cell is simulated by having a fixed
capacity, equal to the maximum theoretical bandwidth of a cell.
Existing background traffic as well as users’ mobility patterns
are taken from the trace between 4-5pm on 17 November,
2014.

The audio streaming users are emulated by mimicking
the action of the mobile Pandora application without actually
transmitting any data or playing the songs. We experimentally
found that Pandora keeps one song in the buffer, in addition
to the current song, at all times. When the playback of the
current song finishes, it downloads one more song as fast as
possible, resulting in a bandwidth spike of a few seconds,
and no bandwidth usage afterwards. For each client, the
emulator keeps track of how much data has been downloaded
for the current song, what the current playback position is,
its location (current cell), as well as the audio pause time,
and updates this information every second. In place of real
traffic, the emulator sends an estimate of how much data the
client would request, to the cell proxies. Each cell proxy then
sums up the bandwidth demand, and distributes the available
bandwidth (after subtracting the background traffic from the
total capacity) among the clients proportional to their demands.

In each experiment, six approaches are compared: 1)
baseline, 2) DASH, 3) TANGO w/o bit-rate adaptation, 4)
TANGO w/o bit-rate adaptation w/ perfect location predictor,
5) TANGO, and 6) TANGO with perfect location predictor.
The same default buffer size is used for all six approaches.
In baseline, the client always tries to keep the buffer full at all
times, and no additional mechanism for reducing stalls is used.
In DASH, the future bandwidth is predicted as the harmonic
mean of download speed during the last 10 seconds, as
recommended by Jiang et al [18]. Three bit-rates are available:
128 Kbps (default), 64 Kbps, and 32 Kbps. The client always
pick the highest bit-rate that uses no more than the predicted
bandwidth. When predicted bandwidth is lower than 32 Kbps,
the lowest bit-rate of 32 Kbps will be chosen. In TANGO,
actual location prediction and network load monitoring happen
in the same way it would be in the real system. TANGO

includes the same bit-rate adaptation mechanism used by
DASH. For comparison, we also included variants of TANGO

without bit-rate adaptation as well as variants with perfect
location predictor. In variants with perfect location predictor,
the location predictor is replaced by one that always makes
correct predictions. This helps quantify the effect the location
predictor’s accuracy has on the overall benefits of the system.

With TANGO, the location predictor continuously predicts
each user’s location and monitors cells in the area for conges-
tion. As part of TANGO’s input, cells need to be designated
as congested or not congested. The thresholds for a cell to
be considered congested are parameters that can be set by the
user. We empirically found that optimal results are obtained
when we consider cells where at least 85% of its capacity
has been used for the last 30 seconds to be congested. Recall
that TANGO works by sending a pre-caching alert to the client
when a user is predicted to be moving to a congested cell
in the next u minutes. The optimal value for u was found
to be 5 minutes. The client emulator pre-caches content by
increasing the buffer size from one song to B minutes and
download the stream at he default 128 Kbps bit-rate as quickly
as possible. The default bit-rate is used in order to prevent
degradation of user experience. The buffer size controls the
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Type Description

Mobile flash crowds 50 Congestions that move across cells like
a user does. Each comes and goes randomly.

Static congestions Congestions in 20% of the cells that lasts
through the whole experiment.

Random congestions Congestions in 50% of the cells that
come randomly and last 0–20 minutes.

TABLE I. DIFFERENT TYPES OF SIMULATED CONGESTIONS USED IN

THE EXPERIMENTS

tradeoff between audio pause time and bandwidth usage. In our
case, we consider lower audio pause time to be more important
than saving bandwidth, so we choose a larger buffer size of
B = 30 minutes.

Each emulated client follows the movement pattern of
a real user from the trace. For these experiments, we only
simulate users with some movement between cells, since
TANGO will not work for stationary users. Each client’s arrival
time is uniformly random within the length of the experiment
of 1 hour. On average, the simulated users move between
cells every 145 seconds, so we believe the chosen length of
experiment is sufficient. The session length follows the Weibull
distribution with λ = 13 minutes and k = 0.52, as found by
Zhang et al. to be the best fit of the session lengths of mobile
online radio users [33]. This corresponds to the average session
length of 24.25 minutes. The relevant characteristics of the
songs in the audio stream are the song length and the bit rate.
The lengths of the songs come from Spotify’s top 50 chart for
the week of November 2, 2014 [5].

We mimic congestion in three ways: 1) by adding mobile
“flash crowds” to the background traffic, 2) by simulating
static congestions in a small fraction of the cells, and 3) by
simulating random congestions in a larger fraction of the cells,
as shown in Table I.

Each simulated flash crowd follows the movement pattern
of a real user randomly picked from the trace. 50 flash crowds
are simulated. Their arrival time is uniformly random, and they
last as long as the original user stays active. In effect, these
flash crowds randomly come and go. While a flash crowd is
in a cell, all users connected to that cell cannot download any
data. Overall, this causes 1.5% of the cells’ operating time to
be congested, when summed across all the cells and across all
the time points and divided by the total number of time points
in the one hour trace.

Static congestions are simulated by randomly picking 20%
of all cells as congested. These congested cells do not provide
any data to the users connected to them. This effect lasts
through the entire 1-hour-long experiment.

Random congestions are similar to static congestions, but
the start time and duration are random. This affects 50% of
the cells. The start time is picked uniformly at random. The
duration ranges from 0 to 20 minutes, also picked uniformly.
Overall, this cause 8.3% of the cells’ operating time to be
congested.

The result of the three simulations is shown in Figure 3.
Total audio pause time is measured as a percentage of total
playback time. For static congestions and random congestions,
there is a critical number of audio streaming users beyond
which the patterns change. This critical point, at roughly
7,000 users for static congestions, and 7,500 users for random
congestions, corresponds to the point where the capacity of
most of the network is reached. For flash crowds, the effect
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Fig. 3. Audio pause time (shown as percentage of total playback duration)
as a function of the number of audio streaming users, with three types of
simulated congestions. BA refers to bitrate adaptation, while PLP refers to
perfect location predictor. Pre-caching initiated by TANGO significantly reduce
pause time due to rebuffering.

is smoother, so there is no clear-cut critical point, although
the general trend is similar. Before the critical point, bit-rate
adaptation in both DASH and TANGO barely provides any
benefit. This is because there is not much opportunity to use
a lower bit-rate, as congestions are sudden, and congested
cells provide zero bandwidth. However, TANGO significantly
reduces audio pause time compared to DASH and baseline,
with TANGO variants with perfect location predictor having a
slight edge over their counterpart with real (imperfect) location
predictor. We believe the reason perfect location predictor only
improves the results slightly is because a false positive can help
mask a false negative later, since the pre-caching buffer size is
30 minutes and users move between cells every 2.4 minutes on
average. In addition, TANGO does not predict an uncongested
cell will become congested. Therefore, when congestions come
and go often, even the perfect location predictor will miss
opportunities for pre-caching.

After the critical point, however, bit-rate adaptation starts
to provide significant benefit. Audio pause time is kept nearly
constant while more users are added even after the capacity
of the network is reached. This is only possible because
the quality of the stream decreases proportionally. TANGO

variants without bit-rate adaptation perform better than DASH
at lower number of audio streaming users, but quickly performs
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Fig. 4. Average audio stream quality as a function of the number of audio
streaming users, with three types of simulated congestions. BA refers to bit-
rate adaptation, while PLP refers to perfect location predictor. Approaches that
do not include bit-rate adaptation always use the default bit-rate of 128 Kbps.

worse as the number of users increases. TANGO with bit-rate
adaptation is able to keep the significant advantage over DASH
even with high number of users.

While reducing stalls is important, doing so while sig-
nificantly lowering the stream’s bit-rate is undesirable. We
measured the average stream’s bit-rate across all users in the
simulations, shown in Figure 4. Approaches that do not include
bit-rate adaptation always keep the bit-rate constant at 128
Kbps. The general trend is that, the higher the number of users,
the lower the average bit-rate. The lower average bit-rate at the
lower end of the number of users is likely due to high variance.
TANGO’s average bit-rate is significantly higher than DASH in
all scenarios, at roughly the midpoint between the highest bit-
rate of 128 Kbps and DASH’s average bit-rate. Looking at
the audio pause time together with average bit-rate, we can
see that TANGO significantly reduces audio pause time, while
maintaining higher stream quality than DASH.

For mobile users, higher bandwidth usage results in more
energy consumed, as well as higher cost of service in most
cases. Therefore, it is important to keep the amount of wasted
bandwidth small. Wasted bandwidth is a result of having a
non-empty buffer at the end of the user’s listening session. We
measured the average wasted bandwidth across all users in our
experiment, shown in Figure 5.
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Fig. 5. Average wasted bandwidth per user due to user abandonment (i.e.,
end of session) for different approaches as a function of the number of audio
streaming users. BA refers to bit-rate adaptation, while PLP refers to perfect
location predictor.

Both baseline and DASH have a fixed buffer size of
one song, so the wasted bandwidth is almost constant. At
higher number of audio streaming users the wasted bandwidth
decreases slightly due to the fact that some users do not
have enough bandwidth to keep the buffer full as well as the
lower bit-rate for DASH. In TANGO, the buffer size changes
dynamically depending on the predicted connectivity for each
user. TANGO produces 2.5–3x the amount of wasted band-
width compared to baseline and DASH. Bit-rate adaptation
only has a small effect on wasted bandwidth. TANGO with
perfect location predictor produces more wasted bandwidth
than TANGO. Overall, the increase in wasted bandwidth is
proportional to the opportunity to pre-cache, which results in
reduction of audio pause time. While using TANGO results in
more wasted bandwidth, we believe this is a worthy tradeoff for
less playback disruption. If desired, lower wasted bandwidth
can be achieved by reducing the pre-caching buffer size, at the
cost of more playback disruption.

Next, we quantify the effects of varying the default buffer
size for each approach in the presence of congestions. Here we
fix the number of audio streaming users at 10,000, and vary
the default buffer size. Note that TANGO has a separate pre-
caching buffer size, which is fixed at 30 minutes. The results
are shown in Figure 6. Buffer sizes are specified in terms of
the number of songs, in addition to the current song, which is
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always buffered in its entirety.

The general trend in all case is that larger buffer results
in lower pause time. However, it is clear that when the
buffer is large, the pause time only depends on whether
bit-rate adaptation is used. This is likely because as buffer
becomes larger, overall bandwidth usage increases, and the
capacity of the network is reached. Without bit-rate adaptation,
the bandwidth required to sustain smooth playback is much
higher, so playback is disrupted for users who cannot get
the required bandwidth. Nevertheless, such large buffers are
not practical, due to the large amount of wasted bandwidth
which is inevitable at the end of the user’s session. With small
buffer, TANGO always perform significantly better than the
respective baseline approach (e.g., DASH vs. TANGO). With
perfect location predictor, the benefit is larger in flash crowds
and static congestions, and almost the same as real location
predictor in random congestions.

These results show that without cooperation from the
cellular network, an audio streaming player needs to pick a
buffer size that gives the best trade-off between low pause
time in the presence of congestions (bigger buffer is better),
and wasting of energy and bandwidth when the user ends the
session. With TANGO, the default buffer size can be kept low,
and bigger buffer is used only when an impending connection
degradation is predicted.

We find experimentally that when 5,000 audio streaming
users are emulated, 64% of the cells are never visited by any
emulated user. Of the remaining 36%, the average number of
emulated users per cell is 2.03. Thus, there is a non-uniform
distribution of users among the cells according to the mobility
traces. We also did a parameter sensitivity study of various
parameters that determine the behavior of pre-caching and
found that non-optimal parameter values still produce close
to optimal results. The results are not shown here due to space
constraints.

2) Idealized benefit to a single video streaming user: In the
previous set of experiments, we showed the benefits of TANGO

with audio streaming. In this experiment, we show that TANGO

can be equally useful for video streaming applications by re-
ducing the video pause time. The experiment setup consists of
a single client moving from uncongested cell to congested cell
while playing video that is hosted on an HTTP server. Since
there is only one client, we run the experiment using a real
video streaming application on an Android smartphone instead
of relying simulations. The application we use is dash.js [3]
which is a popular javascript-based implementation of MPEG-
DASH standard [27]. We chose this player as this is open-
source and is actively backed by many leading industry content
providers [4]. We modified the player to include pre-caching
that gets triggered whenever a congestion alert is sent to the
player. The cells are simulated using an HTTP proxy. The
proxy’s bandwidth is controlled at the server side using the
tc tool in Linux. Simulated congested cells have bandwidth
capacity of 100 Kbps.

In our simulated situation, the player streams a long video
that is obtained from the DASH dataset published by Lederer
et al [19]. The user starts in a non-congested cell and moves to
a congested cell after a varied amount of time from 10 seconds
to 2 minutes. The time spent in congested cell is fixed at 10
minutes. Thus, this experiment captures an idealized benefit
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Fig. 6. Audio pause time (shown as percentage of total playback duration) as
a function of buffer size (as number of songs), with three types of simulated
congestions. BA refers to bitrate adaptation, while PLP refers to perfect
location predictor.
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Fig. 7. Video pause time in the simple case where the user is watching one
long video and move from a uncongested cell to a congested cell.

from pre-caching, as a function of lead time.

We compare four approaches in this experiment: 1) base-
line, 2) DASH, 3) TANGO w/o bit-rate adaptation, and 4)
TANGO. The default buffer size is fixed at 30 seconds for all
approaches. In baseline, the video client does not implement
bitrate adaptation. In DASH, we follow a typical DASH setting
with the video available at four different bit-rates: 220, 440,
895, and 1,340 Kbps. In both variants of TANGO, the client
will start pre-caching from the beginning of the experiment.
The bit-rate adaptation mechanism in TANGO is exactly the
same as in DASH.
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Figure 7 shows the video pause time as experienced by
the client for the four approaches after spending a varied
amount of time in the uncongested cell. We can see that both
baseline and DASH clients are unable to mitigate the pause
time during congestion regardless of time spent in uncongested
cell because of the static buffer size. With or without TANGO,
bit-rate adaptation helps reduce pause time by lowering the bit-
rate while the user is in the congested cell. When lead time is
2 minutes, TANGO is able to pre-cache enough content to last
through 10 minutes of congestion. TANGO, which combines
both pre-caching and adaptation, is most versatile in reducing
the pause time as it can prefetch video content when bandwidth
is high and also download more video during congestion by
reducing the quality which is needed when lead time is small.

3) Location Prediction: Section III describes how the loca-
tion predictor works. It predicts all the cells that the user will
move into in the next 5 minutes, based on the current cell and
previously visited cells. There are two important parameters
that are known to affect the accuracy of location prediction: the
length of history and the probability threshold for generating
an alert. This is a micro experiment to investigate how these
two parameters affect our location prediction accuracy.

The predictor is trained using data from October 1–20,
2014, and tested on data from October 21–31, 2014. The
results for different history lengths are shown in Figure 8.
Here, the alert threshold is fixed at 0.15 (if the probability of
moving to a congested cell is greater than the alert threshold,
then pre-caching is initiated), and the prediction is for the next
5 minutes. Precision is the proportion of all predictions the
classifier makes that says the user will move from the current
cell to another cell C within the next 5 minutes that are correct
predictions. Recall is the proportion of actual user movement
to another cell that was predicted correctly. The results show
that using only the current primary cell to predict future cells
is not adequate. Between history length of 1 and 2, however,
the accuracy difference is small. As the model stores counts of
how many times a user visits cells C1, C2, . . . , Cm+1 (where
m is the history length) separately for each sequence of cells,
the number of parameters needed to be estimated increases
exponentially with the history length. Thus, simpler models
are generally preferred, so we choose the history length of 1
for our experiments.

We also investigate the effect the alert threshold has on
prediction accuracy. For this, we fix the history length to 1.
The results are shown in Figure 9. From the results, selecting
the threshold would involve a tradeoff between precision and
recall. Therefore, we need to compare the relative cost of false
alarm and false negative. A false alarm leads to unnecessary
pre-caching, which may lead to wasted bandwidth at the end of
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Fig. 9. Location prediction accuracy with varying alert threshold.

a user’s listening session. False negative leads to disruption of
the stream, which aggravates the user. The relative cost would
depend on the user and his service plan (e.g., whether he is
on an unlimited data plan). For our experiments, we value less
playback disruption higher than bandwidth, and decided to use
the threshold of 0.15.

Even with the optimal parameters, the prediction accuracy
is still somewhat low. However, there are two specific promis-
ing avenues for improvement. The prediction algorithm that we
use does not take into account when the past cell movement
occurred. This information captures the ‘speed’ of the user,
which will let us separate high mobility users from the low
mobility users. In addition, in the data traces, there is no direct
way of determining cell movements. We use three overlapping
events to infer movements of a user from one cell to another —
throughput (measured every 2 seconds), handover, and release
of a certain radio resource, the last two being event-based. We
learn anecdotally that these three put together are still not a
complete data source for all cell movements.

4) Overhead: We measured the overhead of the location
predictor with respect to the offline training and online pre-
diction. Using a 2.26 GHz Intel Xeon machine, an individual
prediction for one user takes only 1 millisecond. On a macro
level, one core of the CPU provides enough computation for
location prediction for 10.3 million users, each triggering when
the user moves from one cell to another. At this number of
users, the size of input data stream is 667 KB/s on average.
This online overhead scales linearly with the number of users,
and the computation can be easily distributed among servers
to divide the load. Based on these numbers, a single server
is more than adequate for providing location prediction to all
users in one RNC.

Offline training involves processing information about all
movements between cells within the training period, and
therefore takes much longer. Building a model based on 20
days of operation in one RNC, which involves processing
approximately 9 gigabytes of data, takes 16.7 minutes. This
overhead scales linearly with the number of movements be-
tween cells in the training dataset, which is a function of
the number of users and their degree of mobility. This offline
training can be done in bulk periodically at a central location,
or in a distributed manner at the RNCs.

5) Cells with Chronically Poor Connectivity: In addition to
cells that are temporarily congested due to a high number of
active users, data pre-caching can also be used if we can iden-
tify cells that provide chronically inferior data rates compared
to other cells. We find from the traces that the occurrence
of chronically underperforming cells is more common than
transient congestion in the cells. Independent of TANGO, this
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is a useful characterization of a cellular network.

We identify such cells by comparing their average data
rate with those of their neighboring cells, which are more
likely to have similar bandwidth demands than cells further
away. Specifically, we compute the average data rate in each
non-overlapping 30-minute window in the past 7 days of each
cell. Then, for each pair of neighboring cells, we perform the
paired t-test, with the average data rate in a 30-minute window
making up a sample. The p-value threshold is set to 0.05, with
Bonferroni correction. The t-test tells us how likely it is for
the difference to be due to chance (i.e., the two cells have the
same true distribution of average data rates). We classify cells
that have lower data rates (with statistical significance) than
80% of their neighbors as cells with inferior data rate.

We analyze data from period of operation March 1 to
March 31, 2014 from larger areas than the one used in
Section IV-B1 and IV-B3 and found that there are 214 cells
with inferior data rates, out of approximately 15,000 cells.
Within those inferior cells, there are 874,181 unique active
users (those in high power state, with dedicated communication
channel). On average, each of these users spends 9.4 minutes
(per month) in cells with inferior data rates.

6) Dynamic Changes to Underperforming Cells: In this
section, we study how quickly the set of cells identified as
providing inferior data rates change over time. The reasoning
for this is that, if the cells’ quality is static, then there would be
no need for real-time communication between the device and
the network, since the device can simply pre-download the map
of quality of cells and use the location predictor based on local
movement information. On the other hand, if the classification
changes quickly, it would mean that the models will have to
be periodically refreshed.

We analyzed data from multiple RNCs during March 2014
and found that on average, 78% of the cells identified as
providing inferior data rates are still identified as such on the
next day. This means that in one day, 22% of those cells are
no longer providing inferior data rates (while roughly the same
amount of cells are newly identified as providing inferior data
rates). Thus, if not updated, the classifications will quickly
become inaccurate in a matter of a few days. This supports
the need for real-time communication between the device and
the network, as the device cannot simply cache the database
and use it for a long time.

7) Summary Take-aways from Evaluation: We summarize
the main take-aways from the experimental evaluation in Table
II.

V. RELATED WORK

Adaptive bit-rate streaming has been studied in many works
in various aspects. Past measurement studies [7], [15] have
pointed out the problems in bit-rate adaptation. Following
that, different improvements to bit-rate adaptation have been
suggested that adapt either using past TCP throughtput [18],
[20] or buffer occupancy [16] or both [32]. TANGO extends
current streaming system fundamentally and introduces the
idea of buffer adaptation along with bit-rate adaptation using
information from the network. An advantage with our approach
is that it can be integrated easily with any existing bit-rate
adaptation approach.

There are several proposals for managing faults or per-

formance related issues that work either at the network [21],
[24], [31] or the device side [8], [25] without any cooperation
between them. On the network side, much of the work on
fault management in cellular networks has focused on reactive
measures, i.e., detection of the failure [21], [24], [11], [14] and
then identification of the root cause of the failure [9], [29]. On
the device side, Balasubramanian et al. [8] use empirical user
behavior data regarding mobile web search to schedule data
downloads in bursts and reduce energy consumption on the
mobile device. TANGO provides the flexibility to implement
both reactive and proactive mechanisms (e.g. data pre-caching
presented in this paper) on top of it. Furthermore, most of
the prior studies use statistical machine learning techniques
with very limited amount of data [9], [24], [29]. In contrast,
we use a wealth of information from a tier-1 cellular network
provider in US. Also, our data set offers fine device and time
level granularities for our data modeling and analysis.

The performance of data pre-caching presented in this
paper can be further improved by utilizing ideas from several
prior studies on handover in cellular networks [26], [17],
[28]. Javed et al. propose a machine learning framework for
predicting handovers [17]. The premise is that handovers cause
short-term disruption to application performance, and if an
application knows in advanced that a handover is likely to
occur in the near future, it can modify its behavior to counter
the performance degradation.

User mobility prediction has been studied in several works.
Bradley and Rashad propose a prediction technique that take
into account different behaviors of users during weekday and
weekend [10]. Pathirana et al. propose a prediction algorithm
that uses data from GPS measurements in an environment
where both users and base stations are mobile [23]. Zhang et
al. use connected cells combined with call records to enhance
mobility prediction [34]. These location predictors can be used
in place of the simple location predictor used in TANGO, as
long as the required input data is available, and prediction
lookahead can be set to short term such as 5–10 minutes.
Our experiments include results obtained when the location
predictor has 100% accuracy as a comparison point.

VI. CONCLUSIONS

In this paper, we propose TANGO, a framework for the
cellular network and the mobile device to cooperate to improve
both network utilization and user experience. We show an
instantiation of the framework’s pre-caching service, a mech-
anism for notifying mobile streaming application before the
device enters an area with bad connectivity. The streaming
application can then adjusts its buffering strategy by increasing
the size of the buffer and pre-downloading content into it, so
that when connectivity worsens, there is more buffered content
available. We evaluate TANGO using real cellular data collected
at the edge network element of a major US-based cellular net-
work service provider. Evaluation done using simulated audio
streaming application shows that audio pause time is reduced
by 13–72% in the presence of different types of congestions,
while introducing only a slight decrease in stream’s quality and
reasonable amount of extra bandwidth usage. We also identify
cells with chronically poor connectivity, which can potentially
be used as a trigger for data pre-caching, and see that there is a
fair amount of churn in these cells. As ongoing work, we are
furthering the vision of cooperation between mobile devices
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Audio streaming—pause time TANGO reduces pause time significantly compared to DASH and baseline. Bit-rate adaptation can almost nullify
the effect of having more users in the network.

Audio streaming—stream quality TANGO always maintains higher stream quality compared to DASH

Audio streaming—wasted bandwidth TANGO increases bandwidth usage to 2.5–3x in order to pre-cache content

Audio streaming—buffer size Larger buffer will reduce the effects of congestions more. Baseline and DASH need larger buffer in order to match
TANGO’s performance.

Runtime overhead The cost of predicting location is small enough to be usable in practice

Underperforming cells In the cellular network, 1.4% of the cells are underperforming on any one day; 78% of these will underperform the
next day as well

TABLE II. SOME KEY TAKE-AWAYS FROM THE EXPERIMENTAL EVALUATION

and the cellular network by building more services that tap
into knowledge from both sides.
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