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Abstract

We investigate the condition on transmission radius needed to achieve connectivity in duty-cycled
wireless sensor networks (briefly, DC-WSN). First, we settle a conjecture of Das et. al. (2012) and
prove that the connectivity condition on Random Geometric Graphs (RGG), given by Gupta and
Kumar (1989), can be used to derive a weak sufficient condition to achieve connectivity in DC-
WSN. To find a stronger result, we define a new vertex-based random connection model which is
of independent interest. Following a proof technique of Penrose (1991) we prove that when the
density of the nodes approaches infinity then a finite component of size greater than 1 exists with
probability 0 in this model. We use this result to obtain an optimal condition on node transmission
radius which is both necessary and sufficient to achieve connectivity and is hence optimal. The
optimality of such a radius is also tested via simulation for two specific duty-cycle schemes, called
the contiguous and the random selection duty-cycle scheme. Finally, we design a minimum-radius
duty-cycling scheme that achieves connectivity with a transmission radius arbitrarily close to the
one required in Random Geometric Graphs. The overhead in this case is that we have to spend
some time computing the schedule.

1 Introduction

Wireless Sensor Networks (WSNs) have a wide range of applications from wildlife monitoring to critical
infrastructure monitoring, from traffic management to individual health management [34]. The three
primary functions of a sensor are to sense, process and communicate. After being deployed randomly
over a limited area, sensors start to sense a phenomenon on a regular basis. Then, they process the
raw data, and wirelessly forward it to a base station, connected to the external world, via multihop
paths. Since sensors deployments are often made in environments where regular power supply cannot
be guaranteed, they have to rely on batteries and are therefore constrained by a limited energy budget.
Their monitoring activities, however, tend to have a long time line, and so energy consumption is the
overarching problem for WSN operations.

For conserving energy in WSNs, firstly, transmission power can be carefully controlled. This allows
to save energy for the sending node, but also it avoids to loose energy at neighboring nodes for inter-
ferences. However, enough transmission power has to be used to ensure that the basic communication
function of the WSN-relaying data to the base station—can be completed successfully. This trade off
translates into a question of optimal radius for the connectivity of the WSN graph. This has been
studied using the Random Geometric Graph (RGG) model by Gupta and Kumar [I2] among others.

Sensors can also save energy during sensing and processing activities by turning off the radio/sensing
sensor module when possible. This fact has been exploited by passive power conservation mecha-
nisms [21]. In fact the basic idea behind the notion of Duty-Cycled Wireless Sensor Networks (briefly,
DC-WSNs) is that sensors do not need to sense and process all the time. This is not only an option,
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but it might be a necessity if the sensors harvest energy from the environment. For example, a sensor
powered by a solar cell must harvest its energy only during the daytime, and can release it other times.
Currently, sensors powered by solar cells are produced which, after recharging for few hours hours in
daytime, are fully functional (i.e., transmitting a measured value every 15-30 minutes) for one day,
even in complete darkness. While these solar cells are macro devices—they require long recharge times
and offer long self-discharging periods—we also have micro energy harvesters, available in sizes ranging
from centimeters down to micrometers, which store enough energy just for one measurement. So, they
offer very short charge and self-discharge periods. The functioning of a sensor powered with a micro
energy harvester implies intermittent measuring and data sending followed by scavenging and storing
the energy for the next measurement in a buffer (capacitor, battery). Hence recharge opportunities
impact individual node operations as well as system design considerations. Indeed, to exploit the pos-
sible added benefits, the nodes must optimize their capability by tuning different node parameters, like
the duration of the recharging period, and its starting point, in a manner that the available energy
is not exhausted before the next recharge cycle [26]. Since these parameters depend on the sensor
technology and on the applications, we assume that they are injected in the sensors at the time of their
deployment.

For sensors such as these and others we provide the following model: In our duty-cycling paradigm,
sensors repeat a cycle of fixed length L, during which they switch between the awake and sleep
mode. During the sleep mode, the sensors recharge or conserve their batteries by turning-off their
sense/processing /radio modules; during the active mode, the sensors sense, process and communicate
regularly. A natural method for deciding when a sensor node sleeps and when it wakes is to proba-
bilistically choose its sleeping times. However, for the duty-cycled network to function as it should, we
need two properties: (a) time coverage, i.e. data generated at any time must be sensed and relayed by
the network, and (b) connectivity, i.e. every node should be connected to every other and to the base
station. The study of the conditions that guarantee these properties is the focus of this paper.

This problem was initially investigated in [7], where it was conjectured that the DC-WSN is con-
nected if in every time slot the nodes awake form a RGG connected in that time slot. In this paper
we prove this conjecture, and also show that the radius of connectivity that this conjecture implies
is not optimal i.e. a lower connection radius (and hence lower transmission power) is sufficient. This
lower connection radius is also shown to be optimal in the sense that it provides a necessary condi-
tion for connectivity. We call it the optimal radius as opposed to the weak radius conjectured in [7],
We present two natural duty-cycling schemes, called the contiguous scheme and the random selection
scheme that both satisfy the time coverage property. Apart from being useful duty-cycling schemes
for real applications, these schemes also highlight the contribution of this paper since they have the
same weak radius of connectivity but very different optimal radii. We also show that if we are willing
to spend some preprocessing time in defining the duty-cycle scheme, we can compute a deterministic
duty-cycling scheme that achieves connectivity at the minimum possible radius, i.e. the RGG radius.

In order to prove the optimal radius result for duty-cycled WSNs we introduce a new continuum
percolation model that we call the vertez-based random connection model which is a natural gener-
alization of the random connection model as defined in [20]. In this model each node instantiates a
random variable independently of all other nodes and a connection between two nodes (that are within
transmission radius of each other) is made by computing a function of the random values present at
the two nodes. To explain by example, we could say that each node chooses one colour at random out
of Red, Green and Blue and two nodes that are within transmission radius of each other are connected
only if they both have different colours. Clearly, in this model edges are not formed independently
since in the example cited above we cannot have a clique of size 4 since there are only three colors and
so there must be at least one pair of vertices that has the same colour. In other words, in this example
the probability of a 4 clique existing is 0 whereas in a model where edges are formed independently



of each other a clique of size 4 could form with non-zero probability. To the best of our knowledge
the vertex-based random connection model has not been studied in this generality before. We present
basic results about this model, including a high density result following Penrose’s result for the simple
random connection model [22], which allows us to prove the sufficient condition of the optimal radius.

Finally, our vertex-based random connection model can also be considered a generalization to
a model considered by researchers in the area of key presharing for secure communication. In the
key presharing setting Eschenauer and Gligor [9] proposed a scheme in which each node receives a
randomly selected subset of keys and two nodes can communicate if they share a key. This is similar
to our model if we think of time slots as keys and the time slots that a vertex is awake as those keys
assigned to a vertex. In [28], the author stated a specific conjecture regarding the connectivity of RGGs
operating with the Eschenauer-Gligor scheme. Our Theorem [54] settles this conjecture. Therefore, our
contribution is a general and foundational contribution, as well as a detailed and in-depth study of the
particular setting of duty-cycled WSNs.

A preliminary version of this work has appeared as a short 4 page paper in the proceedings of ACM
MSwim 2013 [3]. That version contains none of the proofs presented here and contains only a few of
simulation results of Section

The paper is organized as follows. Section [ relates the previous work in this area. Section [Bl
after introducing our duty-cycle wireless sensor network view, describes its model and its challenges.
Section M introduces the weak radius, while Section [l presents the optimal radius defining a new
“vertex-based” random connection model. Section [0 highlights the significance of our results applying
them to the two natural contiguous and random selection duty-cycling schemes. Finally, in Section [7]
we present a method for computing a periodic duty-cycling scheme that achieves connectivity at the
minimum possible radius, i.e. the RGG radius. Conclusions and wider implications of our results are
discussed in Section Bl

2 Related Work

Duty-cycling is a passive power conservation mechanism widely adopted in WSNs [21I]. The basic
idea of duty-cycling is to reduce the time a node is idle or spends overhearing unnecessary activities
by turning off radio/sensing sensor modules and thus putting the node in the so called sleep mode.
Early research on duty-cycling in WSNs considered this technique tightly integrated with the design
of communication protocols at the MAC layer [23130,31]. The S-MAC duty-cycle protocol [30] was
proposed to minimize energy consumption in battery-powered wireless sensor nodes. B-MAC aims to
reduce costs due to synchronization in S-MAC by means of long preambles and low-power listening [23].
SCP-MAC is a hybrid solution between S-MAC and B-MAC which relies on scheduled channel pollings
instead of asynchronous preambles [31I]. These. and other advanced duty-cycle solutions for the
MAC layer, are revised in the comprehensive A-MAC architecture, proposed in [8]. Subsequently,
sleep /wakeup protocols have been implemented at the network or application level because they permit
a greater flexibility and, in principle, can be used with any MAC protocol. These latter protocols can
be subdivided into three main categories, on-demand, period scheduling, and asynchronous scheme [2].
The basic idea behind on-demand protocols is that a node should wake up only when another node
wants to communicate with it. This requires a way to inform the sleeping node that some other node
is ready to communicate with it. Typically in such on-demand schemes multiple radios with different
energy /performance trade offs (i.e. a low-rate and a low power radio for signaling, and a high-rate
but more power hungry radio for data communication) are used, and thus they require that sensor
hardware characteristics are adapted to the adopted duty-cycle scheme. In periodic scheduling, nodes
wake up according to a wakeup schedule, and remain active (listening to the radio) for a short time



interval to communicate with their neighbors. Finally, in asynchronous sleep/wakeup protocols a node
can wake up when it wants and still be able to communicate with its neighbors. Both periodic and
asynchronous schemes must guarantee that nodes are able to communicate with neighbors without
any explicit information exchange among nodes. Thus, the main challenge in these schemes is to
guarantee that the network is connected and that there is always a sufficient number of awake sensors.
A detailed survey of the sleep/wakeup schedules up to 2008 can be found in [2]. In more recent years,
flexible periodic duty-cycling schemes have been proposed. These schemes vary the length of the awake
period to react to external conditions, like the amount of energy drained so far or the overall operation
latency. For example, in [I1], the authors consider duty cycling in an energy harvesting WSN and
adapt the length of the awake period to the amount of available energy which varies depending on the
space and time. In [I0], the flexibility idea is pushed even forward by proposing a Markov chain-based
duty-cycling scheme. In that paper, the authors assume that the sensors are locally time-synchronized
and feature a common time-slot length, but the time-slot length is computed along with other input
parameters, like working schedule duty cycle and memory coefficient of the Markov-chain process, so as
to improve the network efficiency while keeping a constant connection delay, or to improve connection
delay yet not negatively affecting efficiency.

Many other works in the literature address specific communication operations, including local-
ization, one-to-all communication, data dissemination and collection, in duty-cycled wireless sensor
networks. For example, in [4H0], the benefit of duty-cycling is studied for training duty-cycle sensors to
learn their position with respect to a central sink either when the sensors cooperate amongst themselves
or when the sensors adopt different periodic duty-cycle schemes. The length of the cycle and the length
of sensor awake period are analytically determined in such a way that the energy consumed during the
training process is minimized and all the sensors are guaranteed to learn their position.

For networks to function as they should under power conservation mechanisms, connectivity needs
to be maintained. Such power conservation mechanisms generally exploit WSN redundancy to extract
a subset of active sensors that form a connected communication graph, like a near-optimal dominating
set or a sub-optimal broadcast-tree, which guarantees network functionalities [I5,35]. To the best of
our knowledge, in DC-WSNs, the problem of maintaining connectivity by constructing near-optimal
communication graphs has been addressed in few papers [14,[1618,27]. However, in those works, the
assumptions of their models, like the sensors density in the network, or the type of duty-cycle, sub-
stantially differ from the environment we deal with. In [I6], the one-to-all and the all-to-all paradigms
have been addressed in DC-WSNs. However, sensors can transmit messages at any time, not only
when they are active (awake), and the duty-cycle is considered only with respect to the receiving ca-
pabilities. In [27], the broadcast problem in DC-WSN with unique identifiers is shown to be equivalent
to the shortest path problem in a time-coverage graph, and accordingly an optimal centralized solu-
tion has been presented. In [I8], the problem of least-latency end-to-end routing over asynchronous
and heterogeneous DC-WSNs is modeled as the time-dependent Bellman-Ford problem. In [14], the
minimum-energy multicasting problem is studied in duty-cycle wireless sensor networks again modeling
the network as an undirected graph. These last three investigated approaches may result in infeasible
solutions when scaling to dense WSNs i.e. the case that we consider in this paper.

Seminal work for connectivity in the area of scaling radio networks whose sensors are uniformly
and at random placed over a unit area are reported in [I2L[I3]. The authors study scaling laws for
connectivity when the sensors are always awake (i.e., no duty-cycle) and use a result of Penrose [22] to
show that the RGG is connected with probability tending to 1 as n — oo if and only if

7r(n)? = (logn + ¢(n))/n, where lim ¢(n) = oco. (1)

n—oo

Obviously, these results do not directly apply to the duty-cycle scenario. Nonetheless, we will use them



to prove the conjecture in [7], where a preliminary study of connectivity in uniformly and randomly dis-
tributed DC-WSNs was initiated by modeling the DC-WSNs as a temporal series of random geometric
graphs of only awake sensors.

Gupta and Kumar also conjectured [12,[13] that if each edge between two vertices that are at
most 7(n) apart is formed independently with probability p(n) then connectivity can be obtained if
7r(n)?p(n) = (logn + ¢(n))/n and c¢(n) — oo as n — oo. This conjecture was recently proved in
a slightly more general setting in [19], but always assuming that edges are formed independently.
Although in our DC-WSNs the edge between two sensors are formed with a certain probability which
is the same for all pairs of sensors within transmission radius, the edges are not formed independently.
Hence, the results in [19,32] do not apply to our case. Moreover, the necessary condition of the Gupta
and Kumar’s conjecture had been earlier proved by Yi et. al. [32] who used a geometric approach which
was closer in spirit to the approach used by Gupta and Kumar themselves to prove a result about the
distribution of isolated nodes. We will say more about the technique used in [32] in Section and
using some key aspects of it we prove the necessary condition in Theorem [5.4l In addition, in [33] a
slightly more general model that includes random independent node removals is studied and a result
on the distribution of isolated nodes similar to that of [32] was shown. However this model too falls
short of the generality of our vertex-based random connection model.

Connectivity has also been studied in [24] for the random grid model assuming that each sensor
fails with independent probability 1 — p(n). Although the failure probability may be referred to the
duty-cycle ratio, this paper does not require that all nodes be connected, but only the nodes that
are active at a certain time. This model is different from ours. Besides, their sufficient condition for
connectivity is weaker than ours, even in the grid case (which is considered easier to analyze than the
uniformly distributed case).

Finally, our model can be considered a generalization of the so called key graph of the Eschenauer-
Gligor scheme, which can be seen as an intersection of a random geometric graph with an Erdos-Renyi
graph [9] . Our Theorem 4] settles a specific conjecture for connectivity stated for such graphs in [28],
thus improving on the connectivity conditions previously known for such a model. Moreover, our result
uses a new continuum percolation model, which does not spring from the usual techniques applied for
the Eschenauer-Gligor scheme.

3 Modeling Dense duty-cycled wireless sensor networks

In this section, we describe the network setting that we are studying (Section Bl) and then explain the
graph model by which we try to capture the properties of the setting that are relevant to the study of
connectivity under the family of duty-cycling schemes we consider (Section B.21)

3.1 The network setting

In our view, duty-cycled wireless sensor networks (DC-WSNs) consist of a large population of tiny,
anonymous, mass produced commodity sensors, uniformly and randomly deployed on a vast geograph-
ical area, perhaps via an unmanned vehicle. The sensors must work unattended for long periods of
times. They can be either provided with a limited and nonrenewable power supply or with a limited
and rechargeable power supply. Each sensor is equipped with a processing unit, a sensing unit, a short-
range radio transceiver and, if it applies, with a circuit to harvest the energy. In order to save or store
energy, the sensors follow a periodic pattern of sleeping and waking, known as a duty cycle. When a
sensor sleeps, only its internal clock and its timer are on. During the awake periods, the sensors sense
in their proximity and, if required, they process the collected data and send radio messages.



We assume that just prior to the deployment (perhaps onboard of the vehicle that drops them in
the terrain), the sensors are provided with the parameters required to set a functioning network. As
will be discussed later in this paper, the sensors need to know the total number n of sensors deployed,
the adopted periodic duty-cycled scheme along with its period length L, the number of waking slots d
where d < L, and the probability v that two nodes within the range of transmission can communicate.
In fact, radio messages sent by a sensor can reach only the sensors in its immediate proximity that are
awake at transmission time. Namely, only a fraction v of the overall sensor population in the sensor
proximity can hear the radio message.

Moreover, each sensor is provided with a standard public domain pseudo-random number generator,
which is used for generating the random information of the selected duty-cycle scheme, and with an L-
bit register R where the generated duty cycle scheme is memorized. Precisely, each bit in R represents a
time slot of the period, and it is set to 1 if the sensor is awake and 0 otherwise. To make this description
more concrete, we will consider how the awake period is selected in the two duty-cycle schemes presented
in Section [6l The first scheme, called the contiguous model has been studied in [7]. For this scheme,
by means of the pseudo-random number generator, each sensor u independently chooses an integer i,
from the set {0,1,..., L — 1} and it sets the entries of register R from i, to i, + d — 1 to 1 because it is
awake for d consecutive time slots. The remaining entries of R are set to 0 because the sensors sleeps.
In the following, we will denote this model DC-C-WSN. The second scheme, called the independent
random selection model, is one in which each node chooses the set of the awake d time slots at random
from {0,1,...,L — 1} and sets these entries of R to 1. We will use the notation DC-R-WSN to refer
to this scheme. Note that the DC-C-WSN well models a network of rechargeable sensors, while the
DC-R-WSN a network of sensors equipped with unrenewable energy.

In addition, before deployment the sensors receive an initial time. On the terrain, at the initial
time, all the clocks are synchronous and share the same slot length. The sensors follow their periodic
scheme in a totally distributed way. Each sensor computes the time slot number using its internal
clock and autonomously follows the duty-cycle scheme memorized in its register R. Specifically, the
sensor indexes the register R by the time slot number modulo L and stays awake if R is equal to 1
or goes to sleep if R is equal to 0. As long as the clocks remain synchronized, the time slot number
is the same for all sensors, each duty cycle begins and ends at the same time for all the nodes, while
the sleeping and waking patterns of different sensors may be different. During the network lifetime,
due to clock drift, synchronization may become weaken and it may happen that the sensors no longer
share the same time slot length or the same time slot number. Nonetheless, this can be tolerated as
long as the probability v that two sensors communicate remains the same. Hence, we conclude that
synchronization is not critical for our study. Our results hold for synchronized and non-synchronized
settings. The only thing that the entire of family of duty-cycle schemes that come in our ambit require
is that there should be a well-defined probability + for the event that two nodes within transmission
range of each other overlap in such a way that they can communicate. If this is defined and is the same
for all pairs of nodes then our results hold.

In our setting no centralized or distributed algorithm is deployed to create a connected network
of sensors. We aim to study the situation where at deployment time sensors opportunistically make
connections with every other sensor that they are able to communicate with. Hence our scheme for
network creation is a very simple and greedy scheme involving making all possible connections. At
deployment time each sensor sends requests to connect at every waking slot and handshakes with those
neighbors who are close enough to receive and transmit and also awake for long enough to communicate
meaningfully. While this scheme may appear overly simple it has the major advantage of not incurring
any computational overhead and offering a basic communication mechanism. Moreover, it is worth
noting that no localization algorithm is required for establishing the wireless multihop communications.
It is a separate matter that the sensing application may itself in many cases require localization so that



the raw data can be associated with the location from which it is collected.

The goal of our paper is to give bounds on the transmission power (expressed as transmission
radius) that allow densely placed sensors operating with a periodic sleep schedule to form a connected
network. Once this prequisite of any communication protocol is guaranteed, communication protocols
can be adopted for optimizing the routing process. However, this is a separate matter, not studied in
this paper.

In the following, we model the DC-WSNs and formalize the challenges we encounter.

3.2 The duty-cycled graph model

We first define our notation and the model following [7]. A random geometric graph RGG(n,r) is a
graph with vertex set V' of n points distributed uniformly at random in the unit circle centred at the
origin. These points model the sensor nodes distributed randomly through the area of interest. We
also superimpose one point at the origin itself. There are edges between any two u,v € V such that
d(u,v) < r where d(-,-) is a distance metric defined on R?. The quantity r models the transmission
radius of the sensor nodes.

As described in [7], the primary parameters of the periodic duty-cycle are L, the length of the duty
cycle, and d, the number of waking slots where d < L. We use the notation 6 = [d/L] to indicate the
duty-cycle ratio, which is a measure of the energy spent by each sensor in each cycle. In addition, we
provide a more general definition of a duty-cycled graph than that given in [7]. Each sensor u chooses its
waking slots which we denote by the set A, where A, C {0,1,...,L—1} and |A,| = d. Given a scheme
A for choosing these waking slots, we define the duty-cycle graph DC-WSN 4(n,r,d, L) as follows: it has
the same vertex set as RGG(n,r) and its edge set is: E = {(u,v) : d(u,v) <71, Ay N A, # 0}. Namely,
for two vertices u and v that are within transmission range of each other to be connected, they must
share a slot where they are both awake. Specifically, in the previously introduced DC-C-WSNs, sensor
u chooses Ay = iy, ... ,i, +d—1, where i, is a random number from the set {0,1,..., L — 1}; whereas,
in DC-R-WSNs, the set A, is a set of size d selected at random in {0,1,...,L — 1}.

3.2.1 Connectivity

As explained, a fundamental property desired of any duty-cycled sensor network is connectivity. More
precisely, connectivity means that it should be possible to send data generated at any time at any node
to any other node in the network (within reasonable time).

We make a simple observation about connectivity.

Fact 3.1 If§ > 1/2 then DC-WSN(n,r,0, L) is connected whenever RGG(n,r) is connected.

To see why this is the case note that whenever the awake period of each sensor is (strictly) more than
half the duty cycle then each edge of the original graph RGG(n,r) is available for at least one time
slot because any two waking periods must, by the Pigeonhole Principle, share a slot.

However, for ¢ < 1/2, connectivity is not guaranteed under our current definition. Not only is it
a random event whose probability needs to be determined, it may also be an event which occurs with
probability 0. Consider a scheme where d = 3, L = 10 and each node chooses either A = {0,1,2} or
B = {3,4,5} as its set of waking slots (with probability 1/2 each, independently of all other nodes). In
this scheme all the nodes with waking cycle A can never communicate with all the nodes which have
waking cycle B. Hence we need a condition on the duty-cycling scheme. We call this the reachability
condition.



The reachability condition Consider a scheme A for selecting the waking slots of nodes. Given
the set £L ={A: A C {0,1,...,L — 1}, |A| = d}, let us denote by L(.A) all those subsets in £ that
have non-zero probability of being selected as a waking schedule for a node. Then, the reachability
condition on A is the following:

Reachability. There is a finite & > 0 such that for any Ay, Ay € L(A), there exists a
sequence By, ..., B, where By is A and By is Ay such that B; € L(A),0 < i < k, (2)
and B; N Bj+1 # (Z),O <i<k.

Clearly, as the example above shows, the reachability condition is necessary for connectivity.

It is easy to see that for the contiguous duty cycle scheme, given two nodes whose duty cycles
begin at 7 and j, it is possible to find a chain of overlapping awake cycles beginning at i + m(d — 1),
1<m<[(j—1)/(d—1)]. And since the probability of picking an awake cycle beginning at i +m(d—1)
for the relevant value of m is greater than 0 (in fact 1/L), the reachability condition is easily satisfied.
A similar argument can be made for the random selection scheme, where, in fact k£ = 2 is sufficient
since for any two non-overlapping awake periods we can always pick a third awake period that overlaps
with both with non-zero probability.

3.2.2 Time Coverage

Since the sensor network’s primary function is to sense data from the environment, it is essential that
a sleep schedule should keep a significant fraction of the sensors awake at any time point in such a way
that the area being sensed is covered. This is different from the notion of spatial coverage which is
widely studied in the literature: there the problem is to ensure that a static set of randomly distributed
sensors is able to sense each point in the region of interest. For us the notion of time coverage is this:
a significant fraction of the nodes of the network should be awake in each time slot.

Since we primarily work with probabilistic duty-cycling schemes, we state the coverage requirement
in probabilistic terms.

Time coverage. For each k € {0,1,...,L — 1}, the probability that a node u is awake in
slot k is 6 > 0, where d; may be a function of d and L but is not dependent on the number
of nodes in the network.

Since each node in the network remains awake for d out of L slots we can also think of a stronger
condition on the duty-cycling scheme which ensures symmetry across all the slots in {0,1,...,L}.

Uniform time coverage. For each k € {0,1,...,L — 1}, the probability that a node wu is
awake in slot k is § = [d/L].

We will see that the distinction between coverage and uniform coverage plays a role in determining the
connectivity radius.

4 A weak connectivity result for duty-cycled WSNs

In this section we will show that Gupta and Kumar’s result on connectivity in high density random
geometric graphs gives us a condition on the transmission radius of a node that is sufficient to achieve
connectivity. The main result of this section, Theorem [£T]is a generalization of the result first presented
in Das et. al. [7]. We note that Theorem [£1] generalizes the earlier theorem that was proved in the
previous paper for only DC-C-WSN to a whole family of duty-cycling schemes restricted only by the
reachability and coverage conditions. The former is necessary for connectivity, as discussed above, and
the latter is necessary for the sensing application to not drop any data.



Theorem 4.1 Given a duty-cycling scheme A with 0 < § < 1/2 and d = [6L] > 1, and the marginal
probability of a node being awake in slot i denoted by ;, the probability that DC-WSN(n,r(n),d, L) is
connected tends to 1 as n — oo if A satisfies the reachability condition and the coverage condition and
if

7% (n)0min = (logn + ¢(n))/n, (3)
such that ¢(n) — oo as n — 0o, where Opin = minﬁ;& Of -

Before we prove this theorem we note that the form of this result is non-trivial, especially the role

of the quantity ¢(n). We provide a discussion of the role of ¢(n) in Section E3lright after the statement
of Theorem [5.4] which is, in our view, the appropriate place for this discussion.
Proof. We prove the theorem by considering a set of L subgraphs of DC-WSN 4(n,r,d, L), one for
each time slot in a typical duty cycle. Let us denote these by G;,0 < i < L. To be clear, the vertices
of Giare V; ={u:u € V,i € A,} i.e. the vertices that are awake in time slot i, and the edges of G; are
E; = {(u,v) : u,v € A;,d(u,v) <r}.

The scheme of the proof is as follows. We will first show that if the condition given in the theorem
holds then each G; is connected with probability 1 — o(1). However this is not enough because it may
be that there is some time slot j such that V; and V;4; are completely disjoint leading to a partition
in the graph. To complete the proof we will show that this happens with probability o(1).

Consider the vertex set V; of G;. By the coverage condition, if |V| = n then E(|V;|) = §;n. Using
Gupta and Kumar’s result on connectivity [I2], it is clear that for the case that |V;| > d;n, then
subgraph G; is connected with probability tending to 1 as n — oo if condition (3) is satisfied, since
0; > Omin by definition. This can be seen by mechanically substituting d;n in place of n in Gupta and
Kumar’s theorem and observing that since ¢; is a constant w.r.t. n, so (logd;)/n — 0 as n — co.

Now we note that the probability |V;| < d;n tends to 0 as n — oo. This is a straightforward
application of the law of large numbers, but we formalize it anyway using Chernoff bounds: For each
u € V we define an X!, which takes value 1 if u € V; and is 0 otherwise. Hence:

Vil =" Xa,

ueV

and, by Chernoff bounds, for any € > 0,
P([Vi] < (1 — €)d;n) < e~ (€*0im)/2,

which tends to 0 as n — oo. We note that Chernoff bounds are applicable in this case since each
node chooses its awake cycle independent of all other nodes, and hence for any given i, the probability
that u is awake at time slot i is independent of the corresponding event for all other nodes and so the
collection of random variables {X! : u € V'} is an independent collection.

Suppose we denote by H; the event that G; is connected. Since

P(H}) <P(H} [ |Vi| = din) - P(|Vi| = din) + P([Vi] < din),

we get that P(Hf) = o(1) since Gupta and Kumar’s theorem tells us that the first term goes to 0 and
the Chernoff bound argument tells us that the second term vanishes as n — oo.

Now let us define the event that there is time partitioning among the G;s. Let F} be the event that
ViNViil mod = 0. Recall that we denote by L£(A) the set of all subsets of {0,1,..., L — 1} that have
non-zero probability of being chosen as a waking cycle under the duty-cycle scheme A. Consider the
sets C;,Cir1 C L(A) such that i is in each of the sets in C; and i + 1 is in each set of C;11. Note that
the nodes that choose their waking schedule from C; are precisely the nodes of V;. By the coverage



condition these C; and C;y1 are non-empty. The reachability condition guarantees that for every A € C;
and every B € C;11 there is a k and By, ..., Bx_1 such that all the B; belong to £(A) and AN By # 0,
B;NBii1#0,1<i<k—1and By_1 N B # (). From this condition we can deduce the following:

Claim 4.2 There is a sequence of indices i = jo, ji,...J1 = ¢ + 1 such that for every 0 < k < [ there
is an A € Cj, and a B € Cj,,, such that AN B # ().

Jk+1

We can build this sequence of indices constructively. Take any set from C; and find a B; with respect
to any set in C;11 as given by the reachability condition. Choose any index from B; N By and call it j;.
Similarly pick an index from By N B3 and call it jo and continue all the way till we reach By € C;y1.

Since we have seen earlier that under the condition ([B]) each G; is connected with probability
tending to 1 as n — oo, and that the nodes that choose their waking schedules from C; are exactly the
nodes V;, by the definition of C;, hence the implication of the claim is that if the sequence of subgraphs
Gio»Gj1s- - -, Gj, are connected to each other then there is a path from G; to G; 1 in DC-WSN 4(n, 7,9, L).
Hence the probability that V; and V;y; are disconnected is upper bounded by the probability that
there is an i such that Gj, is disconnected from Gj,,,. Since the sequence {j;}!_, is constructed using
overlapping schedules, the disconnection of G;, and Gj,,, can happen if either (a) one of G;;, or G;, .,
are disconnected, or (b) none of the nodes of Vj, that choose B; as their waking schedule have a node
of Vj, ., as neighbor that chooses B;; as its schedule (denote this event Mj,). We have already shown
that the probability of (a) is o(1). So let us consider the event Mj,.

Let us denote the probability of B; being chosen as a waking schedule by ; for all relevant ¢. The
event M;, occurs if none of the nodes of Vj, that choose B; have a neighbour in Vj,,  that chooses
Bit1. Now if a node of Vj; has k neighbours then the probability that none of them chooses B;; is
(1 — Bi41)*. Since B; > 0, there is with probability tending to 1 as n — oo at least one node u € Vi,
that chooses B; as its waking schedule. We denote by I';, the set of points of V' that lie within distance
7(n) of u. Denote by VBi+1 those nodes of V that choose B; (1 as their waking schedule.

Now, conditioning on the size of I', and using a Chernoff bound argument to upper bound the
probability of |I';| being smaller than its expected value as done above we get

P(M;) < P (ru NVBi+ = ||| > bg(?ﬂ)
+ o(1)

log(n)+e(n)
(1= Bix1) min 4 o0(1)
exp - { it - (loaln) + c(n)

5min

IN

IN

}+0(1),

which is o(1) since f;4+1 and dpnin do not depend on n. Also since the index [ given in Claim is
constant with respect to n (it depends only on d and L), we have shown that the probability that M,
occurs for any ¢ such that 0 < ¢ <[ is o(1). O

In the uniform time coverage situation, i.e. for duty-cycling schemes like the contiguous and the
random schemes, Theorem E.1] yields the following corollary:

Corollary 4.3 For any 0 < 6 < 1/2 and L > 0 such that d = [0L] > 1, the probability that
DC-WSNy(n,r(n),d,L) is connected tends to 1 as n — oo for a duty-cycling scheme A that satis-
fies the reachability condition and the uniform time coverage condition if

7r?(n)d = (logn + c(n))/n, (4)

such that ¢(n) — oo as n — 00.
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5 A strong connectivity result for duty-cycled WSNs

In this section we develop and present our optimal connectivity result for duty-cycled WSNs i.e. the
most important contribution of our paper. Proving this result involves defining a new “vertex-based”
random connection model and claiming certain properties for it. We begin by motivating the need for
this new definition.

5.1 Stochastic domination and the duty-cycling graph

It is natural to believe that the connectivity properties of the Gupta-Kumar graph are sufficient to
prove the stronger theorem that we want. Let us consider the following simple generalization of the
Gupta-Kumar graph that was mentioned in [13]: Given the random geometric graph RGG(n,r) and a
parameter v such that 0 < v < 1, retain each edge of RGG(n,r) with probability v independent of all
other edges. Let us denote this model RGG(n,r,7).

In RGG(n, rv), just like in the duty-cycling graph, it is not necessary that two nodes that are within
transmission range of each other are able to communicate. They can communicate with a probability
~. Hence it is tempting to believe that by choosing the correct values of v we can use the properties of
the generalized Gupta-Kumar graph to determine under what necessary and sufficient conditions the
duty-cycling graph is connected. However, that would require us to be able to compare the probability
of certain events (like the event that a subset of nodes is isolated) across the two models. In general
this is done using the theory of stochastic domination that allows us to compare probabilities of classes
of events across two probability spaces. But the interesting thing here, which pushed us to define the
vertex-based random connection model separately, is that there is no stochastic domination between
these models, and hence we cannot use what we know about RGG(n, r,~) to tell us what we need to
know about DC-WSN(n,r,d, L). We document the details of this stochastic non-domination now. The
reader who does not want to be weighed down by the formal proof can skip the rest of Section B.11

First, we recall the definition of stochastic domination. Suppose we have a lattice 2 whose partial
order is <. A function f : Q@ — R is called increasing if f(wi) < f(w2) whenever w; < wy, for all
w1, wy € Q. Now, suppose we have a measurable space (€2, F). For two probability measures p; and po
defined on this space, we say that y; stochastically dominates jio, denoted po < 1, if E,, (f) < Ep, (f)
for all increasing functions f where E,(f) denotes the expectation of the function f under measure p.

Suppose we denote the probability measure defined on RGG(n,r,~v) as p, and the probability
measure on DC-WSN(n,r,d, L) as pus. Consider the event A(uq,...,u) to be the event that all the
points uq,...,uy are isolated (i.e. have no edges incident on them). This is a decreasing event in the
sense that —I 4y, ... u,) (i-e. the negative of the indicator function of the event) is an increasing event.
To see why this is the case we need to understand the lattice structure of the space on which these
graphs are defined. Note that every configuration contains a set of points and some edges between
these points i.e. each configuration w can be described by a tuple w = (V, E). We define a relation <
as follows: w = (V,E) < = (V,E')if VC V' and E C E'. Now it is easy to see that if uy,...,u
are isolated in configuration w’ then they must be isolated in configuration w whenever w < w’. If some
of uy,...,u; do not exist in w then they can trivially be assumed to be isolated since they have no
neighbors.

Now consider the case where we have k > 1/6 + 1 points, and they are all within distance r of
each other. In this case f1y(A(u1,...,uy)) is some non-zero value, whereas 15(A(ug,...,u)) is 0 since
it is not possible to have more than 1/§ non-overlapping waking periods in the duty-cycled network.
Therefore B, (—Ta(uy,...up) < 0= Eu5(=Iau,....u)) for this value of k, which implies that ps £ pi.

The argument presented above is general for any duty-cycling scheme with parameter §. To the
prove that there is no stochastic domination in the other direction we consider the contiguous duty-
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cycling scheme DC-C-WSN defined in Section B] where each node u chooses a value 4, uniformly at
random from {0,...,L — 1} and is awake at time slots iy, i, + 1 mod L, ...4, +d— 1 mod L. With this
scheme operating, consider the case that there are three point u, v and w that all lie within distance r
of each other in the point process. If we denote the event that any set of edges eq,..., e is in E by
Blet, ..., ex), we have that . (B((u,v), (v,w), (u,w)))) = 3. Now, note that that if u is connected
to v, then for w to be connected to both u and v, w’s waking cycle must overlap with the slots of the
duty cycle which are common to both u and v. We fix the position of u and condition on the event
that v and v have exactly ¢ slots in common (which happens with probability 2/L for all 1 <i <d—1
and with probability 1/L for i = d), we get

Ed:d—i—z—l 2 2-1 3d®-3d+1

5(B((u,v), (u, w), ( . -

=1

It is easy to verify that there are settings d and L for which this value is actually strictly less than

py (B((u,0), (u,w), (v,w))) =7 = ((2d —1)/L).

Hence, for those Settings EH& (IB((u,v),(v,w),(u,w))) < E“W (IB((u,v),(v,w),(u,w)))> and since IB((U7U),(U71U)7(U71U))
is an increasing function: p, A ps.

Hence we have found that the two models are not related through stochastic domination, and this
motivates us to define a new model that can describe the duty-cycled setting better and in which
connectivity results have to be proved anew. We define a general model of this nature, we call it the
vertex-based random connection model, in Section

5.2 A vertex-based random connection model

We now formally define our vertex-based random geometric graph model. This model has four param-
eters. There are two finite positive real numbers A,r. The third parameter is a random variable Z
defined on some probability space (€2, F,P), that is a function of the form Z : Q — @ where @ is some
domain. The fourth parameter is a function f: @ x @ — {0,1}. The vertex set V is a Poisson point
process in R? with density A\ with an additional point at the origin. Now we define the edge set E.
With each u € V' we associate a random variable Z,, which is a copy of Z. All the random variables in
the collection {Z, : u € V'} are independent of each other. Moreover.

(®)

g(u,v) = {P (f(Zu, Z0) =1) if d(u,v) <,

0 otherwise,

where P’ is the product measure defined on the product space of the two random variables Z, and Z,.
In other words, the edge (u,v) exists if f(Z,, Z,) is 1, but only if d(u,v) < r. Clearly, for this model
to be useful, there should be non-zero probability of an edge being formed between two points that are
within distance r of each other. Also note that if P'(f(Z,, Z,) = 1) = 1 then the model reduces to the
RGG.

5.2.1 Some restrictions on the vertex-based random connection model

Since this model is defined in a fairly general setting, we now define some restrictions which make it
more useful for us.
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Non-triviality In this model the edge (u,v) exists if f(Z,,Z,) is 1, but only if d(u,v) < r. A basic
condition we need on the function f and the probability space on which Z is defined is that the
probability of making a connection between two points should be non-zero. We call this the “non-
triviality condition”.

Given two independent copies Zy and Zy of Z, 0 < P (f(Z1,22) =1) < 1. (6)

Finite reachability The model as defined so far admits a serious anomaly. Consider the case where
7 takes values from {0, 1} with equal probability and f is the equality function i.e. f(z,y)=1ifx =1y
and 0 otherwise. Clearly the non-triviality condition is satisfied. However with this definition of f,
the random graph that will be formed will have two distinct classes of points: {u € V : Z, = 0} and
{u € V:Z, =1}. In this case, it will be like we have two random graph models superposed on the
same space (with appropriately thinned Poisson processes) with no possibility of any edge between these
points. If both these processes may be supercritical independently, there are two infinite components.
To mitigate this problem and to ensure that the uniqueness of the infinite component that is seen in
the random connection model is seen here as well, we introduce a condition on f and Z that we call
finite reachability.

Let us first consider the case where A is a finite or countable set. We denote the support of P(-)
by supp(A,P) i.e. the set {z € A : P(z) > 0}. Now, given x,y € supp(A,P) we say that z and
y are O-reachable from each other if f(z,y) = 1, and are k-reachable from each other if there exists
w € supp(A, P) such that x,w are O-reachable from each other and w,y are k — 1 reachable from each
other. The finite reachability condition on f and Z is that all z,y € supp(A, P) are k-reachable from
each other for some finite k i.e.

x,y € supp(A, P) are said to be k-reachable from each other, there is a sequence
wo, w1, ..., wx such that wy is x and wyg is y and w; € supp(A, P), 0 < i < k and (7)
f(wi,'wi+1) =1,0<i<k.

Connection Diversity Non-triviality and the assumption that {Z, : v € V} is an independent
collection implies a property we call the “connection diversity condition.” We are stating it separately
for convenience. Consider k + 1 copies of Z, Zy, Z1, ..., Z}, all independent of each other. There is a
constant ¢ € (0, 1], depending only on Z and f, such that

k
P <f(ZO, Zy) =0n|J f(%. 2) = 1) > e, Vk > 2, (8)

1=2

i.e. given a copy of Z called Zy and k independent copies of Z, Z1,..., Z, there is non-zero probability
that even if f(Zy, Z1) is O there is at least one Z; in the remaining Zs, ..., Zx such that f(Zy, Z;) is 1.

In the following we will assume that whenever we talk of the vertex-based random connection model,
we are talking about a model where f satisfies the non-triviality condition, and hence the connection
diversity condition as well.

5.2.2 Basic properties of the vertex-based random connection model

We now state some fundamental properties of this model. Since this model is a generalization of
the random connection model defined in [20], it is natural to ask whether it shares some properties
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with that model. In fact, under the restrictions described in Section (.21 the vertex-based random
connection model has a non-trivial critical density and has at most one infinite component. We state
these properties formally now.

We will denote by W (z) the connected component containing the point = € V. For the special case
W(0) i.e. the connected component containing the origin, we will simply write W. We will use the
notation 04(z, \) to denote the probability that the point « € V' is part of an infinite cluster. We will
drop the « when z is the origin, writing simply 64(\).

Proposition 5.1 (Critical phenomena and non-triviality of critical density) For the vertex-based ran-
dom connection model with parameters A\ and r < oo and a connection function g based on a function
f and a random variable Z that satisfy the non-triviality condition [@), there is a critical value \. such
that O4(X) > 0 whenever A > \. and 4(\) = 0 whenever A < A.. Moreover 0 < A, < o0.

The proof of the first part of this proposition follows by observing that a standard coupling argu-
ment (see e.g. Meester and Roy [20], ) implies 6,(\) < 0,(\') whenever A < X, and then applying
Kolmogorov’s 0-1 law. The second part, the non-triviality of the critical probability, involves a proof,
but it is a standard proof not very different from that presented in [22], so we omit it here.

As discussed in Section [0 it is easy to see that for a general choice of Z and f the vertex-based
random connection model could contain multiple infinite-sized connected components (clusters). How-
ever, the finite reachability restriction disallows this and forces the model to behave in a reasonable
manner similar to the random connection model, thereby making it of some use to us.

Proposition 5.2 (Uniqueness of the infinite component) The vertex-based random connection model
with parameters A and r < oo and a connection function g based on a function f and a random variable
Z that satisfy the non-triviality condition (6) and the finite reachability condition (3) contains at most
one infinite connected component.

The proof of Proposition proceeds by first noting that due to the ergodicity of the process
the number of infinite components is almost surely constant. Then we proceed by contradiction,
assuming that there are greater than 2 infinite components and showing how multiple components
can be connected with positive probability. This proof is long and involved and is almost exactly
similar to the proof of the same result for the Boolean model (Proposition 3.3 of [20]) so we do not
repeat it here, only noting that a critical part of the proof involves showing that for a large enough
but finite sized box, multiple infinite components enter it and so can be connected within it with
finite probability. Connecting multiple infinite components within a finite sized box in the vertex-
based random connection model requires the finite reachability condition, which establishes that this
condition is not just necessary but also sufficient to establish the uniqueness of the infinite component
(if it exists).

5.2.3 A high density result for the vertex-based random connection model

We now come to our main result. Define the quantity ¢x(\) = PA(|W]| = k),k > 1 where W is the
connected component containing the origin i.e. () is the probability that the component containing
the origin has size k. Our key contribution is that we can show that the following result proved by
Penrose [22] for the high-density setting of the random connection model also holds for the vertex-based
random connection model:

Lemma 5.3

. ZZ"zl Qk(/\)
lim &k=t9 N 4
o (N
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Since 04(A) = 1 — > 72, qx(A), the implication of this theorem is that as A — oo, the origin is either
isolated or part of the infinite component. Any other situation occurs with probability 0. The proof of
this Theorem is involved and technical so we move it to the Appendix.

5.3 The strong connectivity result

Denote by VB-RGG(n, r, ), the vertex-based random connection model graph with vertex set consist-
ing of n points uniformly distributed in the unit circle centred at the origin, with radius bound r, and
a connectivity function g as defined in (fl) using a function f and and random variable Z such that for
any Z; and Zs that are independent copies of Z, v = P(f(Z1,Z3) = 1). Now, we are ready to state
our optimal connectivity result.

Theorem 5.4 P(VB-RGG(n,r,v) is connected) — 1 as n — oo if and only if
mr(n)?y = (logn + c(n))/n, (9)

where ¢ = lim,, o0 ¢(n) = 00 as n — 0.

Discussion on ¢(n) Before we get to the proof, let us briefly discuss the quantity c¢(n) that appears
in (@) and has appeared before in (@) and (). Since the probability that a node is connected to a
neighbor is v in VB-RGG(n,r,v) and since the density of the points in the unit disk is n, we can
reorganize the terms of (@) to see that the average degree of a vertex in this graph is logn + ¢(n).
Hence, what this result is saying is that this graph is connected if and only if the average degree is
greater than logn by a quantity that is asymptotically significant i.e. that tends to infinity when
n — 0o. Another way of writing this is that average degree of (1 4+ w(1/(logn)))logn is necessary and
sufficient for connectivity.

Proof. The theorem says that the condition (@) is both necessary and sufficient to establish connectivity.
We begin with the sufficient condition.

The proof of the sufficient condition uses Lemma which has been proved for the vertex-based
random connection model in the infinite plane. We first need to show that this result can be used in
the finite disc, a step in the proof that was omitted by Gupta and Kumar [I3]. We begin by fixing
our notation. Given n,r € Ry and v € [0, 1] we define three random geometric graph models that are
clearly related to each other. B(r) denotes the disk of radius r centred at the origin and P()) denotes
a Poisson Point Process of density A in R. We define three graphs with the following vertex sets: (1)
VB-RGG(n,r,~): n points distributed uniformly at random in B(1) and one point at the origin. (2)
VB-RGG(n,r,v,¢): n points distributed uniformly at random in B(¢) and one point at the origin.
(3) VB-RGGp(n,r,v,00): P(n) and one point at the origin. The edge set of these random graphs is
defined as specified above for VB-RGG(n,r,v) i.e. using a connection function g that uses a function
f and a random variable Z whose independent copies are associated with each vertex.

We will use the notation Wg)‘(x) to denote the connected component containing the point x, and
use only the notation Wz/\ when z is the origin, where A will be the density of the model (n for all three
models in the description above) and ¢ will be the radius of the disc around the origin in which the
points of the model are placed.

Lemma 5.5 For VB-RGG(n,r(n),v) if we denote by Ay, the event that there exists a sequence {sp }n>1
such that |W{'| > s, and 1 < s, <n,Vn > 1 and s, — 00 as n — oo, then

(1 P(4,)) = lim P(IW}| =1),

lim
n—oo

as long as
Je:r(n)-n? <evn>1 (10)
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Proof. By scaling we couple VB-RGG(n, r,v) to a random graph model on a disc of larger radius such
that the probability that the component containing the origin is of any particular size remains exactly
the same in the coupled model. This coupled model is VB-RGG(n!/3,7 - n!/3 4 n!/3) ie. the random
graph model with a lower density than VB-RGG(n,r,~) by a factor of n?/3 and a radius longer by a
factor of n'/3 on a disc of radius n!/3. This basically involved expanding the unit disc with density to
a disc of radius n'/3. All the edges and non-edges are preserved since the connection radius increases
in exactly the same proportion as the distances between points. The increase in distances brings the
density down by a factor of the square of the increase in distances i.e. by n?/3. Hence it is easy to see
that:

nl/3

P(WT|=k)=P(W" 5| =k),Vn,k > 1.
In particular, taking the limit as n — oo on both sides for k =1,

nl/3

Tim P(WY|=1) = lim P(W/L|=1). (11)

But VB—RGG(n1/3,7‘ . nl/g,%nl/g) has the property that as n — oo, the density of the process
tends to infinity, and the disc it covers expands to the entire plane. In other words it converges
to VB-RGG(A,7(A),7,00) in the limit A — oo. So ([[Il) implies that

P(WF| = 1) = lim P(W2| = 1) (12)

The condition on the connection function (r(n)-n'/? < ¢) implies that the connection function has
bounded support (i.e. beyond a radius that is at most ¢ the probability of forming an edge is 0). Hence
we can use Lemma This lemma along with (I2)) implies that
lim P(JW{| =1) = lim (1 - P(|W2| = c0)). (13)
A—00

n—oo

Noting that as n — oo, the event A, tends to the event {|W2| = oo} as A — oo, the lemma follows

from (I3)). O

The following lemma gives upper bound on the probability of an isolated node existing.

Lemma 5.6 For VB-RGGp(n,r,v), if (9) holds then

lim sup P(Fz € V : [W{'(z)| =1) <e ¢,

n—oo
where ¢ = limy, o0 ¢(n).

Proof. Let us assume that the Poisson process places j points, 1,...,z; in the unit disc. For any
given point out of these j, the probability that it is isolated (i.e. its component has size 1) is computed
by observing that this happens only when the points lying in disc of radius r(n) around it are not
connected to it. To compute this probability we observe that if £ < j — 1 of these points lie inside this
disc then they must all be not connected which happens with probability (1 — +)* for a fixed set of k
points. The number of ways of choosing k points out of j — 1 is (j ;1) and for a fixed set of k points
out of j — 1, the probability that they lie within the disc of radius r(n) around the point of interest

while the other j — 1 — &k do not is given by (7r2(n))*(1 — mr?(n))?~'=*. Hence we have that

[y

7 .
P(2y is isolated) < (j ; 1> (mr? ()P (1 — 7r?(n))y 1R (1 =) = (1 —ymr?(n))y ™Y, (14)
k=0
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and so '
P(3i:1<i < j,a;is isolated) < j - (1 — ymr?(n)) L

From here we get the proof of the lemma just as Gupta and Kumar do by conditioning on the event
that the Poisson point process places j points in the unit disc. a

We note that to be precise we must observe that the disc of radius r(n) centred on an arbitrary point
in the unit disc may not lie entirely within the unit disc. It is easy to see that the this problem occurs
in a ring of width r(n) at the boundary of the unit disc. This complication disappears in the limit
since r(n) — 0 as n — oo. Gupta and Kumar have handled this complication in precise and tedious
detail in the appendix of [I3] and so we don’t repeat that here.

Finally we show that the bound on VB-RGGp(n,r(n),7) containing an isolated vertex trans-
lates into a bound on VB-RGG(n,r(n),7) being disconnected if (@) holds. Since the radius bound
of (@) satisfies the condition (I0]), we can apply Lemma to claim that for any € > 0 there is a
sufficiently large n such that P(VB-RGGp(n,r(n),v) is disconnected) is upper bounded by (1 + ¢) -
P(3z € V : [W(z)| = 1). We follow Gupta and Kumar’s calculations, noting only that in our case
P(node k is isolated in VB-RGG (k,7(n),v)) is upper bounded by (1 — y7r2(n))*~!, Hence,

P(VB-RGG(n,r(n),v) is disconnected)

e—mr?(n)
< 2(1 — 4e) (P(Elx eV Wi z)=1)+ W)

Under condition (@) and using Lemma [£.6] we get

li_>m P(VB-RGG(n,r(n),) is disconnected)
<2(1—4e)(e7).

Since € can be taken to be arbitrarily small, the sufficient part of the theorem follows since ¢(n) — oo
as n — oo implies that e ¢ =0 .

We now move on to the necessary condition, to establish which we will show that when ¢(n) is a
positive constant, the probability of an isolated node existing in VB-RGG(n,r(n),~) is non-zero as
n — oo. This implies that VB-RGG(n,r(n),~) is disconnected with positive probability when c is
a positive constant. Since it can easily be shown using a coupling argument that the probability of
disconnection increases as ¢ decreases, this is sufficient to show that VB-RGG(n,r(n), ) is disconnected
with non-zero probability for all values ¢ which are less than +oc0.

Specifically we will prove the following proposition:

Proposition 5.7 If
7r(n)?y = (logn + )/, (15)
for some constant ¢ > 0 then the distribution of the number isolated nodes in VB-RGG(n,r(n),v) is

Poisson with mean e~ °.

Proof. We note that the basic idea of the proof in the RGG setting is already present in Gupta and
Kumar’s paper [I3]. Yi et. al. have put this proof on a more rigorous basis and extended it to
more general scenarios such as RGGs with nodes being “active” independently with probability p,
what they call Bernoulli nodes [32], and also to the case where nodes and edges are both active or not
independently [33]. Mao and Anderson have obtained the same result using the Chen-Stein method [19]
but we will follow the proof of [32] since it is much more direct and geometrical and hence easier to
adapt for our purposes.
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The proof of Yi et. al. [32] is based on a probabilistic version of Brun’s sieve theorem (see e.g. [1])
which is as follows:

Lemma 5.8 Given a sequence By, Ba, ..., By, of events, define Y, to be the (random) number of B;
that hold. Now, if for any set {iy,...ix} it is true that

k k
P(i_iB;) = P (LB, ). (16)
and there is a constant p such that for any fized k
nkp <ﬂ§lej> — pF as n — oo,
then the sequence {Y'},, converges in distribution to a Poisson random variable with mean .

As in the proof of Yi et. al. [32], we define the event B; as the event that the i-th vertex of
VB-RGG(n,r(n),v), denoted X;, is isolated. In this setting it is clear that the condition (1G] holds
because for any k the joint probability of any k vertices being isolated is the same as that of any other
k vertices due to the fact that all the points are placed uniformly at random in B(1) independent of
each other. Hence to prove Proposition [£.7 using Lemma 5.8, we only need to show that

n*p (ﬂ;?:lBJ) — e % asn — oo, forall k > 1. (17)

We reproduce some necessary notation from Yi et. al. [32]. Given a finite set of points x1, ...,z
from B(1) (i.e. the unit disk centred at the origin), G,(x1,...,z)) is the graph formed by placing an
edge between each pair of points that is at a distance of at most r. C},, is defined as the set of k-tuples
(z1,...,25) € B(1)* such that Ga.(21,...,2;) has exactly m connected components. We note that
the set C}, , consists of those tuples of k points which have the property that a disk of radius r around
each of the points contains none of the other points of the tuple. For a set of points S C B(1), Yi et.
al. denote by v,.(S) the area of the union of the r-radius disks centred at the points of S intersected
with B(1) i.e. the Lebesgue measure of the set of points from B(1) that are at most distance r from
one of the points of S.

When r satisfies ([[3]), Yi et. al. [32] prove the following geometric properties:

n/ (1 — v (z))" tdr — e € as n — . (18)
B(1)
k
nk/ (1—’yyr(azl,...,mk))”_kl_[dmi—>0asn—>oo, for k> 2,1 <m <k. (19)
Cr,m i=1
k
nk/ (1 — ey, ... )" " Hdmi — e " asn — oo, for k> 2. (20)
Ckk i=1

Of these three properties, (I8]) was previously demonstrated in [I3]. To be able to use these properties
to prove that (I7)) holds in our case we need to show certain properties of the probabilities of the events
B;. We state these as a claim.

Claim 5.9 1. For any z € B(1),

P(By | X1 =) = (1 —wp(2)" ", (21)
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2. For any k > 2 and (x1,...,x;) € B(1)¥,

k
P (ﬂ Bi| Xi=2;,1<i< k‘) < (L=l z) " (22)
i=1

3. The equality in (22) is achieved for (z1,...,z1) € Cl k.

Proof. We have already demonstrated that (2I]) holds for VB-RGG(n, r(n), v) in the proof of Lemmal5.6]
(see ([I4)). So we move to ([22]).

Let us abuse notation slightly and use v, (x1, ..., x) to refer to the region that lies within distance
r of any point of x1,...,x; as well as the area of the region. Clearly if the event {ﬂle B | X; =
x;, 1 <1 < k} occurs then it must be the case that even if any of the n — k nodes Xj1,..., X, lies in
vp(21,...,2k) it must not be connected to any point in that subset. If we assume that a point X lies
within the v,.(z1,...,xy), it must lie with distance r of at least one of the points of z1,...,x; and at
most k of them. Since each of these k£ points choose Z,,,1 < i < k independently, the probability of
X, being not connected to each one of them is at most (1 — ) and at least (1 —~)*. The upper bound
is relevant to us here. If we say that some j of the points Xy.11,..., X, lie within v,.(z1,...,zy), since
each of them choose their Z independently, the probability that all 7 of them are not connected to any
of z1,..., 1 is at most (1 —v)’/. Hence we get:

k n—k
—k : . ,
P (ﬂ Bi|Xi=u;1<i< k) <3 ("j )(1 @y ) ) (1= ) (23)
i=1 j=0

The RHS simplifies to give us (22]).

To see that the equality holds for the case where (x1,...,z;) € Ck we note that for any x;,1 <
i < k, it cannot be connected to any of the z;,1 < j < k,i # j since by the definition of C} ; the
distance between any pair of these points is at least 2r which is more than r. Also, since, by the
definition of Cj j these points are spaced 2r apart, the disc of radius r around each of these points
overlaps with none of the other discs. Hence, any point of X, 1,...,X,, that lands in v,(z1,...,zp)
is within distance r of exactly one point of x1, ...,z and hence has probability exactly (1 —~) of not
being connected to it. From this argument we can see that the two upper bound approximations we
used to calculate the RHS of (23)) actually hold exactly whenever (z1,...,z) € C . O

Now we see that (7)) is satisfied for the case when k£ = 1 by combining (I8)) and (ZI). For the
case when k£ > 2, (I9) and [22) imply that when (z1,...,2;) ¢ Cri nkPpP <ﬂ§:13j) — 0asn — oo,
but when (z1,...,2) € Cky, @0) and part 3 of Claim give us that P <ﬂ§lej) — e~k This
concludes the proof of Proposition 5.7 O O

As argued above Proposition [5.7] implies that if ¢(n) does not grow to oo as n — 0, then there is
a non-zero probability of VB-RGG(n,r(n),7) being disconnected as n — oo i.e. the condition that
c(n) — oo as n — 0o is necessary as well as sufficient. O O

6 Simulation results for the Contiguous and Random Duty-Cycle
Schemes

In this section we present the results of an extensive simulation study. The main aim of this study is
to support the theoretical results we have presented so far. Hence we present simulations that show
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that the weak radius presented in Theorem M.] is indeed sufficient. We also show through a series of
experiments that the strong radius presented in Theorem 4] is optimal in the sense that it is both
necessary and sufficient.

In order to demonstrate these results through simulation we need concrete duty-cycling schemes.
For this purpose we use the contiguous and the random selection duty-cycle schemes (DC-C-WSN and
DC-R-WSN, resp.), introduced at the end of Section Bl In the former, the sensor selects a slot in the
cycle period and stays awake for d consecutive time slots. In the latter, the sensor selects at random
d awake slots during the cycle period. And while the prime focus of the simulations is to validate our
theoretical results we also study the sensitivity of DC-C-WSN and DC-R-WSN to the duty-cycling
parameters 0 and L, as well as to the number of nodes n.

6.1 The two duty-cycle schemes

Before describing the experiments, observe that the contiguous duty cycle scheme satisfies the reach-
ability condition given in (), which is an essential condition for the optimal connectivity result (i.e.
Theorem [BA4]) to apply. To see this note that given two nodes u and v whose duty cycles begin at
iy, and 1i,, it is possible to find a chain of overlapping awake periods beginning at i, + m(d — 1),
1 < m < [(iy —iy)/(d — 1)]. And since the probability of picking an awake cycle beginning at
iy, + m(d — 1) for the relevant value of m is greater than 0 (in fact 1/L), the reachability condition is
easily satisfied.

In regard to the random selection scheme, whenever d > 2 the reachability condition can be easily
achieved for any two non-overlapping awake periods. In fact, we can always pick a third awake period
that overlaps with both with non-zero probability. Hence, Theorem [5.4] can be applied here.

The contiguous scheme is very natural and has several advantages. First it is easy and cheap to hard
code in each sensor. Namely, the scheme for each sensor u is uniquely defined by the three constants d,
L and 14,, consuming a negligibly amount of memory. Only log L random bits are needed to generate
1. Moreover, since the d-awake periods are consecutive, the scheme can tolerate clock drift. To clarify
this let us take a concrete example. Say d = 5 and L = 100 and there are nodes u and v such that
i, = 10 and i, = 12 i.e. they have an overlap of 3 slots. Even if the clock of u drifts backward by
one whole slot and the clock of v drifts forward by 1 whole slot, they still overlap for 1 slot, which is
all they need to communicate. Hence the contiguous scheme is robust to problems in synchronization.
Finally, the energy spent in commuting between the sleep and the active mode is minimal since only
two state-transitions occur in each cycle.

The random selection scheme is less thrifty than the contiguous one. Firstly, #(dlog L) bits are
needed to generate a schedule for each sensor. Secondly, each node needs to memorize d constants
in addition to the values of d and L and it incurs in more than 2 mode-transitions in each cycle,
hence spending more energy. However, as we will see, the extra expense incurred is justified since its
optimal radius for connectivity is definitely smaller than the one required by the contiguous model.
This highlights the main contribution of our paper: Theorem [A.1] conjectured by Das et. al. [7] gives a
connectivity condition which is same for both the random and contiguous schemes although the random
scheme is much more complex than the contiguous scheme, whereas our optimal connectivity result,
Theorem [(.4] establishes that a much lower radius is needed to achieve connectivity in the random
scheme as we will see in Corollaries and below.

6.2 Experimental setup

In the rest of this section, we test the weak and the optimal radius by measuring the percentage of
sensors belonging to the largest component in DC-C-WSN and DC-R-WSN for various values of n, L
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and §. For both duty-cycle schemes, we discuss the benefit of the optimal radius over the weak radius
as well as the difference between the optimal radius and the lowest possible radius, i.e., the RGG radius
for connectivity.

Our experiments are performed on a workstation equipped with a 4 GHz Intel processor and 4 GB
of main memory. We implemented the algorithm in C++. We generates n sensors placed uniformly
at random in a unit disk, with 10° < n < 10°. To generate uniformly distributed points we place the
points one at a time. For each point we first choose an angle 6 at random. Then, for a fixed small
value €f, we choose a point uniformly in the triangle which has one point at the origin O = (0,0), one
point at A = (cosf, sinf) and one point at B = (cos(0 + €f), sin(f + €f)). Note that, since we generate
n sensors in a unit disk, the expected number of points that reside in a circle of area mr? is 7r2n.

For efficient processing, we store the sensors (i.e., points) in a kd-tree, a spatial data structure that
recursively subdivides the unit disk into boxes till each individual box at the leaf level contains at most
a predetermined number of points. The points contained in each box were stored in a file. The number
of points in a leaf box is determined such that at least two files could be simultaneously stored in the
main memory.

In regard to the duty-cycle parameters, we select § varying between 0.05 and 0.5 since by Fact 3.1]
the model reduces to RGG for § > 0.5. Then either we calculate d = [dL] by fixing L = 100, or we
derive L = [d/d] by fixing d = 5. In addition to d, L, and r(n), some information is stored in the
file for each sensor, depending on the duty-cycle scheme. For DC-C-WSN, we store for each sensor
its start time, generated at random. For DC-R-WSN, we store a bitmap of length L. This bitmap
will have d of its bits set to 1, which implies that the sensor is awake in that time slot, and the rest
of them set to 0. To add an edge between two sensors, we check if they lie within the connectivity
radius and if they share a common awake slot. To find the connected component, we make use of the
Union Find algorithm. We initially assign unique flags to each point (i.e., each sensor belongs to an
isolated component). Initially these flags point to themselves. As and when we get an edge between
two points, we combine the connected components of both the points by pointing the head flag of one
component to the head flag of the other component. When all edges have been added, the number of
the distinct connected components in the graph and their sizes are traced. Each experiment is repeated
at least five times and the average value and standard deviation are reported. The kd-tree spatial data
structure was used to process pairs of points in 6(n) time, and the connected components were created
in f(nlogn) time. As a result testing connectivity for a random graph model with 105 nodes took
approximately 20 minutes on the hardware mentioned above.

6.3 Weak connectivity condition

Let the weak radius be the radius r(n) that satisfies Theorem Il Since both contiguous and random
selection schemes satisfies the uniform time coverage situation with 0 = [d/L], the weak radius for

both schemes yields:
logn + ¢(n)
_ 24
r(n) = |2 (24

with ¢(n) = 400 as n — +o0. In our experiments, we set ¢(n) to loglogn if not otherwise stated.
We find that the percentage of connectivity achieved by adopting the weak radius is extremely
high. In all our experiments for DC-R-WSNs using the weak radius all the nodes are part of the largest
component (i.e., a percentage of connectivity equal to 100% is reached). For DC-C-WSNs, as depicted
in Figure[I], the percentage of sensors that belong to the largest connected component is always above
99%. This result holds already for n = 2% 10° although it presents a slightly larger standard deviation
than for the highest values of n (see Figure[Ial) and it is true for any the value of § (see Figure[Ihl). These
results, which converge to 1 much more rapidly than those for all awake RGG reported in Figure 2l
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Figure 1: Weak radius: Percentage of sensors in the largest connected component in DC-C-WSN when
@ n varies, or 0 varies. The vertical bars represent the standard deviation.

make us feel that the weak radius is larger than required and are the first motivation for our trying to
find a better radius.

Comparing this percentage with the percentage of sensors in the largest component when the radius
of connectivity is the RGG radius in regular (i.e. all awake) wireless sensor networks (a radius that
is % lower than the weak radius) we find that at the weak radius this percentage is from 5% to 10%

higher (see Figure 2)). In other words the weak radius is not a very useful theoretical result since
we get a connectivity that is not that much higher than the connectivity at the RGG radius, but we
have to transmit 1/ V¢ times the distance. Indeed, on average since the power spent by each node in
transmission is proportional to the square of the radius and since nd sensors are awake in one time
slot, the overall energy spent is almost the same as in regular WSNs, thereby negating the effect of
duty-cycling.

This duty-cycling energy inefficiency is the second motivation that drove us to find a better theo-
retical result than that provided by the weak radius result of [7]. We now move on to presenting that
better result.

6.4 Optimal connectivity condition

Let now concentrate on the strong connectivity result that leads to the optimal radius, that is the
radius r(n) that satisfies Theorem [5.4l To compute the optimal radius for the contiguous and random
duty-cycle scheme, we need to compute the probability v for each of them in the VB-RGG model.

In DC-C-WSNs, a sensor v will share at least one slot with node w if v chooses as its starting point
any of the slots i, — (d — 1) mod L, ... iy,...7, + (d — 1) mod L. Hence, two sensors have probability
v = %L_l of sharing a slot. Now, let the optimal DC-C-WSN radius be the radius r(n) that satisfies
Theorem 5.4 when v = %L_l. We have:
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Figure 2: Percentage of sensors in the largest connected component for all awake WSNs adopting the
lowest possible radius for connectivity, i.e., the RGG radius.

Corollary 6.1 When v = LL_l <1, P(DC-C-WSN is connected) — 1 as n — oo if and only if
logn + ¢(n)
_ 25
r(n) (26 —1/L)xn’ (25)

Note that if v = % > 1, the radius in (25]) goes below the RGG radius and is no longer meaningful.
However, v = LL_l > 1 implies § > 1/2, and by Fact Bl the RGG radius given in (Il) guarantees the
connectivity property.

In DC-R-WSNs, when a node u has chosen d slots, another node v has d possibilities to choose
one slot in common with u and the probability of doing that is at least § each time. Hence, the
probability that two sensors share one slot is v > (1 —(1- 5)d). Therefore, by Theorem (.4 the

optimal DC-R-WSN radius must satisfy:

where ¢ = lim,, ;o0 ¢(n) = 0.

Corollary 6.2 P(DC-R-WSN is connected) — 1 as n — oo if and only if

B logn + ¢(n)
r(n) = \/(1 —(1=08))mn’ (26)

where ¢ = lim,,_;o0 ¢(n) = 0.

We first study the size of the largest component under the optimal radius. In Figure B we plot the
the percentage of sensors that belong to the largest component on the y-axis versus n on the x-axis
when L = 100, 10° < n < 105, § = 0.05,0.15 and 0.25. For both schemes, fixing a value of §, the size of
the largest connected component increases when n increases. In both DC-R-WSN and DC-C-WSN we
note that the percentage of nodes in the largest component decreases as § increases, which is expected
since « increases as ¢ increases and so the optimal radius decreases (see Table [ for more details).
Nonetheless, for all the experiments on DC-C-WSNs, more than 90% of the sensors belong to the
largest component. This is also true for DC-R-WSNs for small values of § and even for larger values of
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d for large enough n (see Figure [Bh). The substantial drop off in the size of the largest component of
DC-R-WSN for § = 0.25 is due to the fact that 7 rises very quickly to 1 in this case and so the optimal
radius of DC-R-WSN falls quickly down to the RGG radius (see Table [2)).
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Figure 3: Optimal radius: Percentage of sensors in the largest connected component for different values
of § when n varies @ in DC-C-WSN in DC-R-WSN.

L =200 L =100
) DC-C-WSN | DC-R-WSN | DC-C-WSN | DC-R-WSN
0.02 1.322 1.970 1.224 1.407
0.05 1.378 2.832 1.341 2.127
0.10 1.396 2.963 1.378 2.552
0.15 1.402 2.572 1.390 2.466
0.20 1.405 2.236 1.396 2.249
0.50 1.410 1.414 1.407 1.414

Table 1: The ratio between the weak and the optimal radius in DC-C-WSN and DC-R-WSN for
different § and L.

We tabulate in Table [l the ratio of the weak and optimal radii in both schemes to explain Figures [l
and Bl We note that whereas the weak radius is the same for both DC-C-WSN and DC-R-WSN
whenever § is fixed, there is a radical difference in the optimal radius. observe that as suggested
by (25), for DC-C-WSN the weak radius is approximately a v/2 factor longer than the optimal radius.
Such a factor decreases when the cycle length L decreases, but it remains always below /2. For
DC-R-WSN in contrast when 0.05 < 6 < 0.4 and d > 4, the ratio between the weak and the optimal
radius is always above /2, implying that DC-R-WSNs require a smaller transmission radius to be
connected than the DC-C-WSNs. We also note that the ratio is consistently higher for DC-R-WSN
although as d reaches 0.5 the ratio becomes about the same since  reaches close to 1 for both schemes.

Figure [ depicts the connectivity percentage of DC-C-WSNs and DC-R-WSNs under the optimal
radius when n = 10°, § varies in [0.1,0.5] and L is fixed to 100. We see that as & increases up to 0.15,
the optimal radius in DC-R-WSNs decreases fast towards the RGG radius, and so the connectivity of
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and L are fixed in @ DC-C-WSNs @ DC-R-WSNs.

DC-R-WSNs in Figure decreases. Past this point, i.e. for larger values of §, the optimal radius is
close to the RGG radius and the connectivity in DC-R-WSNs remains stable and substantially close
to that of regular sensor networks. In Figure dal the connectivity remains stable and 5% above that of
regular sensors as expected since the optimal radius is approximately 3/2 times the RGG radius and
decreases slowly. Clearly, it appears that, for both schemes, the connectivity performance decrease
happens when the radius approaches the RGG radius model, but the performance is never worse than
that of regular networks.

This observation is backed up by Table 2l where the weak and the optimal radius are compared
with the minimum possible radius given by the RGG model for two different values of L.

L = 200 L =100
) DC-C-WSN | DC-R-WSN | DC-C-WSN | DC-R-WSN
0.02 5.345 3.589 5.773 5.025
0.05 3.244 1.578 3.333 2.102
0.10 2.264 1.067 2.294 1.239
0.15 1.841 1.003 1.857 1.046
0.20 1.591 1.000 1.601 1.005
0.50 1.002 1 1.005 1.005

Table 2: The ratio between the optimal radius and the minimum possible transmission radius (i.e, the

RGG radius).

We also studied the influence of L on the percentage of connectivity in Figure Bl Here we fix d,
while L changes accordingly to d/§. One immediately notes that the drop off in DC-R-WSNs is less
than the drop off in Figure [d In the case of DC-R-WSNs, this different behaviour is due to the fact
that, as reported in Table [3] the optimal radius for the DC-R-WSNs decreases slower when L is fixed
than when d is fixed. For DC-C-WSNs, the variation of the optimal radius when § changes and either
d or L are fixed is minimal showing that DC-C-WSNs are less influenced by L. To be precise, the
optimal radius when d = 5 is slightly greater than when L = 100 and so is the connectivity, which
remains above 97% even when ¢ = 0.5.
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Figure 5: Optimal radius: Percentage of sensors in the largest connected component when  varies, n
and d are fixed in [(a)] DC-C-WSNs [(b)] DC-R-WSNs.

DC-C-WSNs DC-R-WSNs
) d=5|L=100 | d=5| L=100
0.05 | 3.333 3.333 2.102 2.102
0.10 | 2.357 | 2.294 1.562 1.239
0.20 | 1.667 1.601 1.219 1.005
0.40 | 1.178 1.125 1.042 1

Table 3: The ratio between the optimal radius and the minimum possible transmission radius (i.e, the
RGG radius) when ¢ varies and either d or L are fixed.
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Figure 6: @ The number of isolated points in DC-C-WSN. @ The size of the largest second compo-
nent in DC-C-WSNs.

We now show that under the strong connectivity condition, the energy saving is effective. On
average, DC-C-WSNs spend half the energy of the regular WSNs since there are nd awake sensors
and each sensor transmits with energy proportional to 2—15 times the energy spent by a sensor in an
always-awake WSN. A higher saving is possible for DC-R-WSNs. In fact, each awake sensor transmits
Wlth energy proportlonal to the energy spent by a sensor in an always awake WSN multiplied by
—=, which becomes very close to 1 when § > 0.20. Hence, DC-R-WSNs spend energy

1-6)4 71—
pr(gpor)tional to the number nd of awake sensors, which is the most desirable situation. In conclusion,
the optimal connectivity condition undoubtedly leads to a great gain in the radius length, and thus
leads to a great energy saving in power transmission for both schemes, but especially for DC-R-WSNss.

To establish that the radius condition given in Corollary [6.1] is necessary we studied the situation
where ¢(n) does not grow to oo as n grows (Figure [fl). Figure [Gal shows that although the connectivity
is still high in DC-C-WSN when ¢(n) = 1 and when ¢(n) = —1, the number of isolated nodes is rapidly
increasing, the increase being faster in the case where ¢(n) = —1. This indicates that the percentage
connectivity is continuously dropping. Moreover, Figure [6h] shows that when c¢(n) < 0, the size of the
second largest component increases as |c¢(n)| increases which implies that the probability of connectivity
tends to 0 as n — oo if lim,_,o ¢(n) = —oo. These results show the necessity of the condition on ¢(n).

We conducted a series of experiments to establish the optimality of the optimal radius. In particular,
we varied the additive factor ¢(n) in the optimal connectivity condition. As we expect from the
previous discussion, since the optimal DC-R-WSN radius falls more sharply than the optimal radius for
DC-C-WSN (and in fact is not far from the minimum RGG radius), the connectivity in DC-R-WSNs
drops before it does in DC-C-WSNs. Figure [ shows that when ¢(n) = —loglog(n) DC-R-WSNs
are below 10% of connectivity independent of n, while DC-C-WSNs still reach a good percentage of
connectivity, especially for large n. Figure 8 shows for which values of ¢(n) both schemes experience
a comparable and drastic loss of connectivity, dropping below 0.2%. For DC-C-WSNs, this happens
between c(n) = —(loglogn)? and c¢(n) = —2y/logn (see Table @ for the absolute values), while for
DC-R-WSNs this happens when ¢(n) = —5.
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c(n)
n -(loglogn)? | -2%\/logn | -2.5%\/logn
0.5 % 106 -6.60 -5.25 -6.57
100 -6.86 -7.43 -9.29
1.5 % 10° -7.02 -9.10 -11.38
2% 10° -7.12 -10.51 -13.14
2.5 % 10° -7.23 -11.75 -14.69

Table 4: The values of ¢(n) when n varies.
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Table 5: Estimate of sensor power consumption in different operational modes at 2.5 Volt and with a

sensor RGG transmission radius r(n) = 4/ w and n = 2 x 10°.

Sensor Mode Current Drawn | Power Consumed
Sleep
(CPU inactive, timer on, radio off) 6 pA 0.015 mW
CPU switch on, radio startup 3 mA 15 mW
CPU switch off, radio shutdown 3 mA 15 mW
Awake
(CPU active, radio listening or RX) 12 mA 32 mW
CPU active, radio TX 20 mA 50 mW

6.5 Power consumption in DC-C-WSNs and DC-R-WSNs

The main focus of this paper is to study the minimum radius that guarantees connectivity of the duty-
cycling graph for a large family of duty-cycling schemes, i.e. to study the minimum local transmission
power spent by a duty-cycled sensor. It is not clear that minimizing local power leads to minimum
global power consumption for any given set of packets being sent across the network. We do not
attempt any comprehensive characterization of the power consumption of different routing problems
in the duty-cycled case since that is outside the scope of this paper. Instead we pick a simple point-
to-point communication task and compare the power consumption of the weak and optimal radii of
DC-R-WSN and DC-C-WSN for that task. We also study the power consumption of the “always on”
network that uses the RGG radius to connect which corresponds to a local power level that is lower
than the local power levels of the duty-cycled networks we study.

Simulation setup In the experiments related to global power consumption, we use the sensor power
consumption levels given in Table [l [6,25]. To calibrate our experiments we set P = 50mW as the
power spent for transmitting up to the RGG radius 7(n) (see Equation [l) with n = 2 % 10° and
¢(n) = loglogn. The transmission power P(T(n')) to cover an arbitrary radius 7(n’) is then given by

P(F(n')) = P(r(n)) - 222((7:;)). Note that the radius 7(n') varies according to the duty-cycle scheme and
the number of sensors. Moreover, since the transmission is considered successful if the SINR (Signal-
to-Interference-plus-Noise-Ratio) is above a certain threshold, we assume that the power for receiving
M is independent of the distance between the transmitting and the receiving sensor.

We assume that if a sensor is awake, the CPU is active and the sensor listens to the radio. In this
way, awake sensors can receive the incoming message M without extra overhead [25]. Moreover, we
do not consider interference in our simplified simulations. Power is also spent to switch between sleep
and awake modes, i.e., to switch on/off both the CPU and the radio. Note that, in this model, the
only extra power for performing any network task is the power spent in actually transmitting packets
which is directly proportional to the square of the current transmission radius. We will see ahead that
the power consumed by transmissions in our network task is the least in the “always on” case which is
expected since the radius of transmission is the lowest. But, the power required to operate the network
in the “always on” case is much higher. For example, a simple calculation shows that over 100 times
slots the “always on” network consumes 3.2 W per node only for operation without any transmission.
On the other hand for the duty-cycled case, setting § = 0.05 and L = 100 i.e. with d = 5, assuming
one transition from sleep to waking and one from waking to sleep in the DC-C-WSN case we find that
the total power consumed at a node is 0.19W which is 16 times lower than the “always on” case. Since
in DC-R-WSN the number of transitions between sleep and waking are more the power consumed is
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slightly higher but is no more than 0.31W (counting five transitions from sleep to wake and five in the
opposite direction) which is more than 10 times lower than the “always on” case. Therefore we see an
order of magnitude difference in the operation of the network that more than compensates (as we will
see) for the extra power spent in transmission in most network tasks.

The network task The network operation we will study, Send(M, S, D) involves sending message M
from source node S to destination node D. We define the total transmission power of this operation as
the sum of the power spent in transmission only by each sensor that receives and retransmits M during
the broadcast operation. We experimentally measure by simulations the total transmission power for
the two concrete DC-C-WSN and DC-R-WSN schemes when the weak and the optimal radius are
used. We also consider the total transmission power for Send(M, S, D) on always awake WSNs, where
each sensor transmits adopting the RGG radius. The results presented, unlike our previous results in
Theorems Il and [E.4], have no general validity. We claim them only for the two specific duty-cycling
schemes we have studied so far, and that too only for the operation Send(M, S, D).

In our experiments, we select the source S for the Send(M, S, D) operation in the center of the
deployment area, which is a disk of unit radius, and the destination D is an arbitrary sensor at
Euclidean distance d(S, D) = 0.1 from S. We assume that each sensor knows its polar coordinates in
the deployment.

In order to a simulate realistic situation we implement Send(M, S, D) using a greedy algorithm
which is a kind of partial flooding of the network as follows:

1. S sends the message M to all its neighbors.

2. Node u retransmits M only the first time it receives the message under the following condition:
u transmits M for d slots (i.e. for one duty-cycle) if it receives from a sender v which is further
from D than u itself.

We call this algorithm the greedy directional algorithm since it tries to move the message in the
direction of the destination i.e. the distance between transmitting sensor and D is guaranteed to
decrease as the hop count of the message increases. We also implement a relazed greedy directional (or
simply, relazed greedy) algorithm which is the same as the greedy directional algorithm except that a
sensor retransmits M if its Euclidean distance from D is no larger than 1.2 times the distance of the
sender i.e. in the relaxed greedy algorithm, the distance between the transmitting sensor and D is not
guaranteed to decrease at every hop, although it increases by a bounded amount

Whenever not otherwise specified, Send(M, S, D) is implemented by the greedy directional algo-
rithm. We use the relaxed greedy for the cases where greedy directional does not find a path (despite
the network being connected) e.g. in the “always on” case that uses the RGG radius and DC-R-WSN
when it uses the optimal radius. The failure of the greedy to find a path in these situations is due to
the fact that since the radii here are very low, the paths from S to D can sometimes encounter twists
and turns and may not always move in the desired direction.

Results and analysis To contextualize the power consumption of Send(M SD) we began by plotting
the number of hops needed to complete the task under the DC-R-WSN and DC-C-WSN with both
the optimal radius and the weak radius, as well as the number of hops needed by the “always on”
network using the RGG radius (Figure @al). Additionally we plotted the number of time slots taken to
complete the task in the five cases considered above (Figure QD). We found that the number of hops
increases more or less as the radius decreases, with the RGG scheme having the maximum number
hops. Although the weak radius is the same for DC-C-WSN and DC-R-WSN the number of hops to
reach D is smaller in the latter case because of the greater probability of connection in DC-R-WSN. We
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Figure 10: Number of sensors that receive M and retransmit it during the Send(M, S, D) operation
when § = 0.05.

find that for the duty-cycled schemes the completion times report in Figure are in the same order
as the number of hops i.e. lower the number of hops for a scheme, the quicker the message reaches the
destination. The RGG scheme has a much lower completion time than the duty-cycled schemes, which
is to be expected since sensors are always on in this case.

Figure [0 plots the number N’ of sensors that receive M and retransmit it during the Send (M, S, D)
operation from S to D. In general N’ increases with the number of hops with the “always on” sensors
registering the highest values of the five scenarios studied. When the radius is the same for both
DC-C-WSN and DC-R-WSN, i.e. the weak radius, we find that N’ is larger for DC-R-WSN although
we had seen in Figure [Qal that number of hops for DC-R-WSN with weak radius is lower than that of
DC-C-WSN with weak radius. Here we see that a node’s ability to make more connections under the
DC-R-WSN scheme becomes a disadvantage in terms of power consumption.

Figure [[1al plots the total transmission power, i.e. the power spent only in transmission by all
the sensors that participate in Send(M, S, D). Among the duty-cycled schemes the winner here is
DC-C-WSN with optimal radius which reflects the fact that it has a low number of transmitting nodes
N’. The DC-R-WSN schemes both perform worse than the DC-C-WSN schemes which is a clear
consequence of having made a larger number of transmissions (as we saw in Figure [[0)). But, on the
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other hand, DC-R-WSN with optimal radius beats DC-R-WSN with weak radius, despite having made
more transmissions which shows the benefit of having a lower local power consumption. Always awake
WSNs spend very little amount of energy for transmission, but, as we see in Figure 11Dl the total power
they consume to complete the task is among the highest which is clearly a consequence of their high
cost of operation. We note in Figure [[1D] that the duty-cycled networks that adopt the weak radius
are those that consume the minimum total power. Among these the DC-C-WSNs demand less power
networks since they need lower transmission power, as seen in Figure [[Tal and because they consume
less power for their basic operation since they just switch once between sleep and awake mode in each
period. Overall the worst performer is DC-R-WSN with the optimal radius which is due to the fact
that the poor connectivity it offers forces us to use the relaxed greedy algorithm, thereby incurring
a greater number of transmissions (as we saw in Figure [I0)) that offsets the benefit of the low power
consumption in local transmissions.

In conclusion we see that the global power consumption for a given network task depends on
several factors, many of which are specific to the task that we are attempting. Minimizing the local
power consumption does not automatically minimize the global power consumption for a given task.
However the low cost of basic operation of duty-cycled networks benefits them as long as they offer
good connectivity that allows us to carry out the given task.

7 A minimum-radius duty-cycling scheme

So far we have studied the situation where given d and L and some scheme for selecting d waking slots
out of L we have a probability v for connection between two neighboring nodes and hence a minimum
transmission radius for achieving connectivity in the network. This transmission radius is 1/,/7 higher
than the radius required for connectivity in RGGs. Now we show that with a careful choice of such
a scheme for selecting the slots we can achieve connectivity even at the RGG radius. Namely, in this
section we move away from the general approach spanning a whole family of duty-cycling schemes
of the previous section and give an algorithm for finding a particular awake scheduling scheme that
ensures that the duty-cycled network achieves connectivity using the RGG radius.
Given an integer k > 1, consider a duty cycling scheme with the following properties:

1. Each node chooses a duty cycle from one of k predefined options, we call them C4,...,C) where
each C; € {0,1,...,L1} and |C;| =0 - L =d.

2. All k duty-cycle options overlap i.e. for each 1 <i #,j <k, C; N C; # 0.
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3. No time instance is left uncovered i.e. UF_,C; = {0,1,..., L — 1}.

Note that if such a scheme were to exist, we would be able to send data from any node to node
provided the base network is connected i.e. if the Gupta-Kumar bound is satisfied (without any extra
factor) we achieve connectivity, since a node with any of the k duty-cycles can send a message to any
of its neighbors. It just has to wait for the overlap point of time to come. Also, from a time coverage
point of view this scheme is good since there is no point of time when all the sensors are off. And, in
fact, on average 1/k fraction of all sensors at least are guaranteed to be on at any time step.

The question is: Does such a schedule exist? The answer is yes. Consider the following simple
definition of a schedule:

Given k we build k& schedules Aq,... Ay by randomly picking d time slots for each one of
them independently of the others.

Clearly if 6 > 1/2 then any k duty cycles we choose have the property that all of them overlap, so
we focus on the case where § < 1/2.

Claim 7.1 For a given k, the random selection schedule described above has the property that all the
k schedules overlap, with probability at least

1 k‘(/‘?; D -

Proof. The probability that two schedules A; and A; do not overlap is computed by calculating the
probability that A; is picked only from {0,1,2,...,L — 1} \ 4; i.e.

P41 A; = 0) = <L—d>/<L> _L—d-(L—d—-1)---(L—-2d+]1) - (1_g>d§6_5d‘

d d L-(L-1)---(L—d+1) L
Since there are k(k + 1)/2 such pairs, we get the result claimed. O

We turn to the time coverage property. Clearly, the probability that a given slot ¢, 0 <14 < L is not
covered by a given schedule is (1 — ¢§). Since all the schedules are independent, slot i is not covered by
any schedule is (1 — §)*. Hence, using the union bound over all the L slots, we get:

Claim 7.2 The probability that every time slot is covered by at least one schedule is at least
1—L-e %,

Hence we get that a random choice of the k duty-cycle schedules gives us a schedule with both

properties with probability:
1
1— <%.e—5d+[j.e—5k>_

This probability can be made arbitrarily close to 1 by choosing L large enough and setting k£ to a
value that is 6(log L). But even if this probability is non-zero that is fine, because we need to find these
schedules offline and then hard code them into the sensors. So, a randomized algorithm that keeps
selecting k-schedules and then testing them to see if they have both properties will finish in polynomial
time with high probability since testing for the two properties can easily be done in linear time.

Hence, we see that there is a way of organizing duty-cycles for any given value of § such that if
the Gupta-Kumar bound is achieved then connectivity if achieved. The parameter whose value suffers
to achieve this is L which may have to be made large. In Figure I2] the percentage of connectivity is
plotted when L and § vary. For example, for 6 = 0.05, the 90% of connectivity is reached for L > 600
and hence d = 30 is a good choice for the deterministic duty-cycle scheme.
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8 Conclusion: The wider implications of our results

In this paper we have studied the duty-cycled wireless sensor network setting and provided a necessary
and sufficient condition on the radius of transmission for connectivity in such networks. The work we
built on [7] provided only a sufficient condition which was a shortcoming that we have rectified. In the
process we have defined a new random connection model which has not, to the best of our knowledge,
been proposed earlier. The most important contribution of this paper is Theorem [5.4] which is a general
theorem with implications beyond the duty-cycling setting.

An important setting in which Theorem [5.4lis applicable is in wireless network security, specifically
key-predistribution for secure communication. In this setting, Eschenauer and Gligor proposed a
scheme in which each node of the network chooses K keys at random from a pool of P available keys,
and secure communication is possible if two nodes share a common key [9]. Clearly if these nodes are
part of a sensor network with limited transmission power at each node, the question of the radius of
connectivity arises. It is also fairly clear that the model here is exactly similar to that of our random
selection duty cycle with P playing the role of L and K playing the role of d.

In fact, in a recent paper [28] it was pointed out that K. Krzywdziriski and K. Rybarczyk [17] had

proved that if
9 ~ logn
CQp = C )
n

where «,, is the probability of two nodes sharing a key (corresponding to 7 in our case), then the
random geometric graph with the Eschenauer-Gligor scheme is connected with probability tending to
1if ¢ > 8 and is disconnected with probability tending to 1 if ¢ < 1. In [2§] the author also claims that
Yi. et. al. [33] had conjectured a stronger result on the lines of Gupta and Kumar’s result [13], i.e.
the Eschenauer-Gligor scheme on a graph is connected with probability tending to 1 if and only if

ar(n)? - a, = logn + c(n) c(n)’

n

and ¢(n) — oo as n — oo. This conjecture (Eq. (3) in [28]) can now be considered closed since it is
nothing other than our Corollary [6.2] which, as we have seen, follows easily from Theorem 54l It is our
belief that for the more abstract problem of key-predistribution on a complete graph (see e.g. [29]),
our method of defining a vertex-based model of connectivity and proving the requisite properties may
help improve the current best known results in that area as well.
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We feel that as in the case of key-predistribution on RGGs, there may be other settings where The-
orem [0.4] may be applicable, for example the study of connectivity in WSNs with directional antennas
where the direction is fixed at random independently at each node. Our contribution, therefore, is a
general and foundational contribution, as well as a detailed and in-depth study of the particular setting
of duty-cycled WSNSs.
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APPENDIX
A Proof of Lemma 5.3

In order to prove this theorem we will show that Penrose’s proof technique can be followed for our
model as well. To show this we define some notation first defined in [22].

Suppose U = {x1,...,x;} is finite set of points in R? and x¢ is another point in R?. Suppose we
form a random graph G with the points U U {xzy} using our connection function g(-,-) i.e. we associate
a copy of Z with each of the points and then draw edges as defined in ().

e Define g1 (z0; U) to be the probability that xg is not isolated in this graph i.e. that z( is connected
to at least one of the points in U.

e Also define ga(zg,x1,...,2k) to be the probability that the graph G is connected.

The proof technique partitions the event {|W| = k} by mapping the points of W to a lattice of
points of the form ¢z, 2 € Z? and studying the number of such points in the mapping. This is done as
follows: We define a map Fj : R? — 6Z? which sends a point of R? to the nearest point of the lattice
0Z2. Since in general there may be more than one such point, we note that in a Poisson point process
this does not happen with probability 1, and hence this map is well defined with probability 1. What
could happen, however is that a number of points of R? get mapped to the same point of §Z? and in
fact we can see that a box of width § centred at a point of the lattice is mapped to the lattice point at
the centre by Fs. To be able to describe such boxes, we denote by B; the box [—[,1] x [-[,I] i.e. the
box of width 2 centred at the origin. Further we will denote by S5 the set of points of §Z? which are
images of the points in W.

In order to prove the theorem, we will prove the following lemmas that Penrose demonstrated are
true for the random connection model.

Lemma A.1 For sufficiently small 0,

i k=2 AW = kNS5 = 1)

=0.
A—00 ql(/\)

This lemma is clearly not enough to prove Lemma [5.3] but it helps us prove the following lemma from
which the theorem follows:

Lemma A.2 For sufficiently small § and for each fized m,

lim w1 PA(IW] = kNS5 = m)

=0.
A—00 ql()\)

We will need the following general characterization:
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Proposition A.3 For any k € N,
Ak_l
PA(|W] Zk‘ﬂWCBl)ZW/B /B 92(0,21,..., 2 — 1)
. 1 l

- exp {—/\ /2 g1(y; {0, 21, . .. ,wk—l)dy} dry - drg_y. (27)
R

Proof. Let E(n,l) denote the event that |W| =k and W C B;. Let us condition on the event that the
number of points of the Poisson process in Bj is m, we call this event |V(B;)| = m. Recall that the m
points inside B; are uniformly distributed when we condition on |V (B;)| = m. Hence, we have that:

v =m = (") (3) [ [ P07 = o e s o5

where P’'(0,21,...,7,_1) is the probability measure in the subspace where there are m uniformly
distributed points in By, there is a point at the origin, and there is a Poisson point process of density A
in R?2\ B;. The integral on the right hand side is obtained by conditioning on the events that each of
the m points is in a square of area dz;,1 < i < m (with probability dz;/(21)? and then choosing k — 1
of them to be part of W. We decondition by integrating over B; for all m points. The m — (k —1) that
don’t get chosen simply contribute a factor of 1/(21)? to the integral.

If W =1{0,21,...,2x_1} then it must be the case that no point from R?\ B; is connected to the
points 0, x1,...,2;. We use the function ¢;(+;---) defined above in this case. As remarked above, given
a fixed set of points, 0,21,...,7,_1 in this case, the collection of events that any point of R?\ B,
is connected to (or isolated from) these points is an independent collection. Hence, by Proposition
1.3 of Meester and Roy [20], the set of points connected to these points forms an (inhomogeneous)
thinning of the Poisson point process V(R? \ B;, with a thinning factor which is exactly equal to
g1(y;0,21,...,2x_1) for any point y € R?\ B;. Hence, the probability that no point of R?\ B; is
connected to any of 0,x1,...,x5_1 IS

exp{—k/ gl(y;O,xl,-..,wk_l)dy}-
R\ B

From the definition of gs(---) we obtain that

P/(W = {Oaxl7 s 7‘Tk—1}) = 92(07x17 s ,Z'k_l) - €xp {_)‘/ 91(?47 0,.’1’1, s ,.Z'k_l)dy}
R

A\B
m
. H(l - gl(xlv 0,.’1’1, e 71'16—1))7
i=k
where again we use the fact that the events that x; is isolated from 0, x1,...,z,_1, for & < i < m form

an independent collection. Now, substituting into ([28]), we get

P(E(n, )N |V (B)| =m) = e—A(zzﬂM (krf 1) . <%>2m

m:
/ / 92(0,131,..-,:1:]@—1)
B B

-exp{—k/ gl(y;O,xl,--.,xk_l)dy}
R\ B,

m—(k—1)
. </ (1= g1(2;0,21,... ,xk_l))dz> dxy -+ drp_1. (29)
By
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Now consider the quantity:

Zym 2m m—(k—1)
ez Q@D om 1A / o
tm =€ m! E—1 21 Bl(l 91(2;0,21,. .., 21))d2

@ L . . 0 p m—(k—1)
=e (m—(k:—l))'(k‘—l)' B( gl(zﬂ 7‘T17"'7mk—1)) z .
! ! )

Summing a,, over all m > k — 1, we get

e~ 202 yk—1

Z e (e Tl exp—{)\/Bl(l—91(2;0,:E1,...,:Ek_1))dz}.

1=k—1
Combining this with (29]), we get

o202 )\k 1
P(E(n,1)) = - : g2(0,21,...,25-1)
l l

-exp{—A/ gl(y;O,wl,---,xk_1)dy} 'eXp{—A/ gl(y;O,wl,--.,xk_l)dy}
R2\B; By
-exp{/ dz}

B

The result follows by observing that the last term is equal to eA2D?, a

We now move to the proof of the two lemmas.

Proof of Lemmal[Ad:  Denote by ¢}()\) the quantity P(|W| = kN |Ss| = 1). Since the condition that
|Ss] = 1 is the same as saying that all the points of 1V are contained in Bj/s i.e. the box with width §
centred at the origin, we can use Proposition [A.3] to say that

/\k 1
qk( = / / Oa:l,.. a;k—l)
QA Bs/a Ba/z

- exp {—/\/ g1(y; {0, z1, ... ,wk—l)dy} dxy - drg_.

/\k 1
§ / / exp{ /\/ 91(y; {0, 21, ..., Tk 1)dy} dxy---dzp_1.
Bs /2 Bs /2

The second step followmg by the fact that the function ga(-;---) takes value at most 1. Now, consider
a ¢ small enough that By is completely contained in a circle centred at 0 with radius r/2, where r is
the radius defined in the connection function. Let us denote this circle C'(0,7/2). In order to apply the
connection diversity condition we use the lower bound

/ a1(y; {O,wl,---,wk—l)dyZ/ g1(y; {0, 21, ..., xp—1)dy.
R2 c(0,r/2)

Clearly a point in C(0,7/2) is within distance r of any other point in C'(0,7/2), so we can apply the
connection diversity condition (8) to get

k—1
Qk,‘( )\ / / exp / Cdy d$1 e dﬂ?k—l-
ql k ) 35/2 B5/2 0(077“/2)

(/\ 52)19 1
(k=1

—C’TI'T
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Summing over k > 2, we get

-1

Yoo BN ez = (A ()R
k=2 N /2.;::2 o

Q1A (k —
_ €>\52_C7W2/2,
Which tends to 0 as A — oo for all § satisfying A\d? — cmr?/2 < 0. O
Proof of Lemma [A.3:  Since our connection function allows no connection beyond a fixed length

(the so-called “bounded support” condition), there are only finitely many configurations of S5 with
|S5| = m. So, we will show that for any 1 which is a finite subset of §Z2,

ZPA(‘W‘ =kNSs=n)/q1(A\) = 0as X\ — oco.
k=1

We denote by W, the connected component containing the origin when we remove all the points of
V' that lie outside Fé_l(n) i.e. the area of the plane outside the set of squares of side § depicted in
Figure [[3] Let E(n, k) be the event that W), has k points in it and for each point of 7 at least one point

Ay

[ ]

B s Rt

Figure 13: Fs with each point shown surrounded by a box of the form Bj/. A;, A, and A; are also
shown.

of W, lies in the square of side 0 centred at that point. Let H, be the event that there is no point of V'
in R?\ F;!(n) that is connected to any point of W;,. Then the event {|W| = kN S; = 1} is the same
as the event E(n, k) N H,. We will estimate the probability

Py(Hy|E(n, k)) = exp {—A/R 91(y; Wn)dy} : (30)

2\Fy ' (n)

Where, as before, the equality follows from Proposition 1.3 of Meester and Roy [20]. Suppose we have
91 small enough for the conclusion of Lemma [AT] to hold. In that case if F, 6_1(77) can be contained in
Bgs, /o then the we are done. So we will assume that the width of Fy L(n) is at least §;. An argument
symmetric to the one we will show can be made if the height is more than ;.
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Define x; = inf{x : (z,y) € n}, x, = sup{x : (z,y) € n} and xy = sup{y : (z,y) € n} to be
the x coordinates of the leftmost and rightmost points, and the y coordinate of the topmost points
of n. Using these, define the sets 4; = {(z,y) : * < 27 — §/2}, A, = {(z,y) : ¢ < z; + 6/2} and
Ay =A{(z,y) 1y >x + /2,21 —0/2 < o < x, + §/2} (see Figure [[3) Note that A;, A, and A; are
disjoint regions of R?\ F;(n).

By the definition of E(n, k) and x;, if E(n, k) occurs there must exist a point uy = (z1,y1) € Wy,
such that |z1 — 27| < §/2. We lower bound the probability of a point in A; connecting to any point in
W, by the probability that it connects to u;. Hence

/gl(y,Wn)dyz/ g(y,u1)dy
Ay A

Since the distance between the boundary of A; and u; could be as large as § (but not larger), and
shifting u; to the origin, we have

/ gl(y,Wn)dyZ/ 9(y,0)dy
A

(—00,—0) X (—00,00)

The same argument holds for A, with a similarly chose us and so

/ 91(y, Wy)dy > / 9(y,0)dy — / 9(y,0)dy (31)
AlUAr R2 (_676)X(_OO7OO)
Also, if E(n, k) occurs, there is a point uz = (x3,y3) € W), such that |z; —y3| < §/2. And so, as before,
/ 91(y, Wy)dy = / 9(y, uz)dy (32)
At At

Now, we define two sets in R2, A, = (0,d1/2) x (6,00) and A_(—d1,0) x (§,00). From the non-triviality
condition on f it is easy to see that for any value of r > 0,

min / g(O,a:)da:,/ 9(0,x)dx p > 0.
(0,81/2)%(0,00) (—=61/2,0)%x(0,00)

Hence, if we choose a small enough value of §, we can find a ¢ > 0 such that

min{/ g(O,az)daz,/ g(O,x)dz} >c+/ g(0,x)dx. (33)
At A (—8,0)x (—00,00)

Note that A_ and A4 have width 6;/2 and we are in the case where the width of 7 is at least d;. So,
if we recenter A_ and A, at ug, at least one of them will be fully contained in A;. Combining this
observation with ([B2]) which bounds the integral of the isolation function in terms of the connection
function around ug we get that

/At g1(y, Wy)dy > min{/A+ g(O,:n)d:n,/A g(ovzp)dsg}

Further substituting (33]), this given us

/ g1(y, Wy)dy > ¢ +/ g(0,z)dx. (34)
Ay (—,0)x (—00,00)
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Combining this with (B1)

/ 91(y, Wy)dy > ¢ +/ 9(0,z)dx.
AtUAUA, R2

Observing that 4; U A, U A; CR?\ F 6_1(77), the last equation substituted into (B0) gives us that

Py\(H,|E(n,k)) < exp {—A <c + /R2 g(O,:z:)d:v) } .

Since, q1(\) = exp {—)\ fR2 g(O,x)dm}, we get that

PA(Hy|E(, k) _ —xc
a1(N) - 7

which in turn means that
Px(H, N E(n, k))

q1(\)

< PA(E(n,k)) - e
Summing over k£ > 1, we have

ZZOZI PA(Hn N E(U,
q1(N)

) < o= S B (B ).
k=1

For any fixed n, since Y, PA(E(n, k)) is at most 1, the right hand side tends to 0 as A — oo.
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