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Abstract—Understanding the user-perceived quality of
experience (QoE) of HTTP-based video has become critical
for content providers, distributors, and network operators. For
network operators, monitoring QoE is challenging due to lack of
access to video streaming applications, user devices, or servers.
Thus, network operators need to rely on the network traffic
to infer key metrics that influence video QoE. Furthermore,
with content providers increasingly encrypting the network
traffic, the task of QoE inference from passive measurements
has become even more challenging. In this paper, we present
a methodology called eMIMIC that uses passive network
measurements to estimate key video QoE metrics for encrypted
HTTP-based adaptive streaming (HAS) sessions. eMIMIC uses
packet headers from network traffic to model an HAS session
and estimate video QoE metrics, such as average bitrate and
re-buffering ratio. We evaluate our methodology using network
traces from a variety of realistic conditions and ground truth
collected using a lab testbed for video sessions from three
popular services, two video on demand (VoD) and one Live.
eMIMIC estimates re-buffering ratio within 1% point of ground
truth for up to 75% sessions in VoD (80% in Live) and average
bitrate with error under 100 Kb/s for up to 80% sessions in VoD
(70% in Live). We also compare eMIMIC with recently proposed
machine learning-based QoE estimation methodology. We show
that eMIMIC can predict average bitrate with 2.8%–3.2%
higher accuracy and re-buffering ratio with 9.8%–24.8% higher
accuracy without requiring any training on ground truth QoE
metrics. Finally, we show that eMIMIC can estimate real-time
QoE metrics with at least 89.6% accuracy in identifying buffer
occupancy state and at least 85.7% accuracy in identifying
average bitrate class of recently downloaded chunks.

Index Terms—HTTP adaptive streaming, quality of experience,
network operator, network measurements, QoE inference.

I. INTRODUCTION

UNDERSTANDING the user-perceived Quality of
Experience (QoE) is important for network operators,
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as it can help with efficient provisioning and manage-
ment [2], [3]. However, estimating QoE is challenging in
general since not only is it subjective, but also application-
specific, and the operators do not have access to applications
at end user devices to observe ground truth of key objective
metrics impacting QoE. Instead, they have to rely on passive
measurements of network traffic to estimate objective QoE
metrics. This works well for applications whose objective
QoE metrics are directly reflected by, for example, observable
network Quality of Service (QoS) metrics, such as packet
delay and jitter for voice quality [4]. However, this can
be challenging for HTTP-based Adaptive Streaming (HAS)
video, a major contributor to network traffic [5], because
of its robustness to short-term variations in the underlying
network QoS resulting from the use of the video buffer and
bitrate adaptation.

Existing approaches [6], [7], [8], [9] for HAS video QoE
estimation propose using machine learning algorithms to learn
the relationship between network QoS metrics and application-
layer QoE metrics. However, these approaches have several
limitations. First, they require ground truth QoE metrics for
initial training, which are not generally available to operators.
Second, different video services use different service design
parameters such as encoding bitrates and bitrate adaptation
logic. Thus, relationships learned for one service do not nec-
essarily generalize for others. Third, these approaches give a
categorical estimate of the QoE metrics which might not be
adequate for active QoE-based traffic management as proposed
recently [2], [3].

In prior work [10], we presented a highly accurate and
practical QoE inference approach (with the system details
presented in [11]) for HAS video, called MIMIC. MIMIC
relied on extracting information from the application layer, i.e.,
Uniform Resource Identifiers (URIs) and other HTTP headers.
With increasing number of video service providers using end-
to-end encryption, MIMIC loses visibility into the key pieces
of information needed for QoE inference.

To overcome this challenge, we present a QoE estimation
approach for encrypted HAS video, called eMIMIC, which
works by reconstructing the chunk-based delivery sequence of
a video session from packet traces of encrypted traffic. This
reconstructed sequence is then used to model a video ses-
sion based on high-level HAS properties, which are generally
consistent across services.
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From the accurately built model, eMIMIC can estimate aver-
age bitrate, re-buffering ratio, bitrate switches and startup time,
the key objective metrics that influence HAS QoE [12]. An
operator may need to further model the impact of these met-
rics taken together on the user experience, either through user
studies [13] or objective data analysis [14], [15]. This step
is complimentary to the estimation of the individual objective
QoE metrics and is out of scope of this paper. The key objec-
tive of this paper is to demonstrate feasibility and accuracy
of the cross-layer approach to infer service-level QoE metrics
from network-level passive measurements.

To facilitate the QoE inference from encrypted video ses-
sions, we develop an experimental framework with automated
streaming and collection of network traces and ground truth of
video sessions, as well as QoE metric estimation. We use this
framework to do an extensive evaluation of eMIMIC with three
popular commercial video streaming services out of which
two are video on demand (VoD) and one is a Live streaming
service.

Furthermore, we replicate a recently proposed machine
learning-based QoE estimation approach, hereon referred to
as ML16 [7], by fully implementing and applying it to the
same two video services. This helps in understanding the dif-
ferences in performance and accuracy between the two QoE
estimation approaches, so that they can be further evolved
and improved. Finally, we evaluate eMIMIC in estimating
real-time QoE metrics.

Our contributions are summarized as follows:
• We present eMIMIC, a methodology that uses passive

measurements at network-layer to estimate service-level
video QoE metrics of the encrypted video sessions.

• We develop an experimental framework for automated
streaming and collection of network traces and ground
truth QoE metrics of video sessions of three popular
video streaming service providers. Using this framework
under realistic network conditions, we show that eMIMIC
estimates re-buffering ratio within one percentage point of
ground truth for up to 75% of video sessions in VoD (80%
in Live), and average bitrate with error under 100 kbps
for up to 80% (70% in Live) of sessions.

• We compare eMIMIC with ML16 [7] and show that for
categorical prediction (low, medium and high) of QoE
metrics, eMIMIC has 2.8%-3.2% higher accuracy in clas-
sifying average bitrate and 9.8%-24.8% higher accuracy
in classifying re-buffering ratio, without requiring train-
ing on any ground truth QoE metrics. We also find that
ML16 does not generalize across video services.

• We show that eMIMIC can estimate real-time QoE met-
rics with at least 89.6% accuracy in identifying buffer
occupancy state and at least 85.7% accuracy in iden-
tifying average bitrate class of recently downloaded
chunks.

The remainder of the paper is organized as follows. We
begin by describing different categories of QoE inference
approaches and design requirements of an ideal approach in
Section II. Section III describes the related work. Section IV
presents our QoE inference methodology, followed by its
evaluation in Section V. Section VI discusses some of the

Fig. 1. Overview of QoE inference approaches.

outstanding issues in video QoE inference from passive
network measurements, while Section VII concludes the paper.

II. BACKGROUND AND DESIGN REQUIREMENTS

A. QoE Inference Methods

Existing video QoE inference approaches using passive
network measurements can be broadly classified into two
categories; Session Modeling-based (SM-based) and Machine
Learning-based (ML-based).

SM-based approach: This approach infers QoE by modeling
a video session using the properties of the underlying stream-
ing protocol (Figure 1a). For unencrypted HAS video, MIMIC
estimates the key video QoE metrics by modeling a video ses-
sion as a sequence of chunks whose information is directly
extracted from HTTP requests logged by a Web proxy [10].

ML-based approach: This approach infers QoE by correlat-
ing the network observable metrics such as packet delay, loss
and throughput with the video QoE metrics using machine
learning algorithms. Figure 1b shows a high-level overview of
this approach. Implemented as a supervised ML-based method,
it has an offline phase to build a QoE prediction model. This
phase consists of selecting useful features to be extracted
from network traffic and labeling them with corresponding
ground truth, using which the algorithm learns the relationship
between features and ground truth. Variants of this approach
have been proposed that differ either in the feature selection
or the training methodology (details in Section III).

B. Design Requirements

We motivate eMIMIC by describing the design requirements
of an ideal QoE inference approach for a network operator.

• Works on encrypted traffic: Given an increased use
of end-to-end encryption in HAS, this is a critical
requirement for operators. Clearly, ML-based approaches
will work if the required features can be collected
from encrypted traffic. However, existing SM-based
approaches that rely on visibility of HTTP transactions
will not.

• Minimally dependent on QoE ground truth: An ideal
QoE estimation method should not introduce extensive
overhead in incorporating ground truth. The disadvan-
tages of ML-based approach include a requirement to
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collect the extensive ground truth measurement under a
wide variety of network conditions, followed by train-
ing and validation of the learned model. Recent works
propose methods to obtain ground truth through player
instrumentation [6], [8], logging unencrypted versions of
the traffic [7] or using a trusted proxy [9]. Unfortunately,
there is no guarantee that any video service will sup-
port these approaches. On the other hand, an SM-based
approach needs no training and minimal ground truth for
validation. It may only need a few design parameters that
can be easily obtained with a handful of test runs, as we
demonstrate with eMIMIC.

• Generalizes across different services: To understand the
QoE of many video services in its network, opera-
tors would prefer an approach that generalizes well.
Given that content providers differ in system design and
player implementations, ML-based models learned for
one service do not necessarily generalize across differ-
ent services, as we show in Section V-E. An SM-based
approach, however, does not significantly suffer from this
limitation since the underlying HAS properties do not
change much across services.

• Provides quantitative measures: For active QoE-based
traffic management, such as QoE-based resource alloca-
tion [2], [3], operators may need quantitative measures of
QoE metrics. ML-based approaches typically provide cat-
egorical estimates of QoE with two (good or bad) or three
(low, medium and high) categories whereas an SM-based
approach estimates quantitative values of QoE metrics.

Takeaway: It is clear that an SM-based QoE inference
approach that also works for encrypted traffic would be prefer-
able for operators, as it would satisfy all design requirements.
Therefore, we design eMIMIC, an SM-based approach that
works on encrypted traffic.

III. RELATED WORK

A. Video Traffic Classification

In order to use the network measurements for inferring
video QoE, video traffic first needs to be separated from other
network traffic. Several traffic classification approaches exist
that focus on classifying the application protocol (like HTTP
vs FTP) based on the network traffic properties [16]. More
recently, traffic classification efforts have focused on classify-
ing applications within HTTP. Shbair et al. [17] use ML to
classify application classes within HTTPS traffic. ML-based
techniques have been proposed to specifically identify HAS
video flows in the network [18], [19]. eMIMIC currently uses
Server Name Indication (SNI) field in TLS handshake [20]
for video traffic identification. However, it can also use afore-
mentioned approaches for filtering video traffic in case TLS
headers are not available to an operator.

B. QoE-Based Network Management

Several in-network optimizations have been suggested
that take into account video QoE. Mansy et al. [3] and
Chen et al. [21] present QoE-aware schedulers in the
network to improve fairness among different adaptive video

streams. Similarly, network-assisted bitrate adaptation frame-
works have been suggested for adaptive video flows [22], [23].
Kassler et al. [24] propose QoE-based routing using software
defined networking (SDN). Mustafa et al. [25] propose using
SDN for in-network video QoE-aware resource management.
eMIMIC can be used by these approaches to understand the
impact of in-network modifications on video QoE.

C. ML-Based QoE Inference Approaches

Researchers have proposed different ML-based approaches
to infer video QoE using network measurements. These ML-
based approaches differ in one or more ways such as the target
QoE metric, machine learning model and features, and training
methodology including collection of ground truth QoE metrics.

For progressive streaming, OneClick [26] and HostView [27]
propose obtaining the subjective ground truth QoE through
user feedback in the training phase and using regression-
based models for their estimation. Prometheus [6] suggests
using LASSO regression trained using instrumented clients to
estimate objective video QoE metrics.

For encrypted HAS, ML16 [7] and BUFFEST [9] capture
the QoE metrics sent by the player to the content provider
on the network and build decision tree-based classifiers to
estimate individual QoE metrics and buffer occupancy, respec-
tively. Orsolic et al. [8] develop an Android application to
obtain ground truth QoE for YouTube and evaluate differ-
ent machine learning approaches for inferring different QoE
classes. Using data from a similar YouTube client application
and statistics derived from IP headers as the feature vector,
Tsilimantos et al. [19] train different machine learning mod-
els to estimate the buffer state from the IP packet headers.
Mazhar and Shafiq [28] classify different QoE metrics in real-
time using decision trees and IP headers for QUIC and TCP
headers for HTTPS video. In contrast, we rely on the prop-
erties of HAS instead of using machine learning and thus
minimize the training overhead.

D. ML-Based QoE Inference Approaches

SM-based approaches have been proposed for dif-
ferent streaming protocols. Schatz et al. [29] and
Dimopoulos et al. [30] estimate video re-buffering by
modeling a session using TCP headers and HTTP headers,
respectively. However, these methods were designed for
HTTP progressive streaming and would not work for HAS
video. Our recent work, MIMIC [10], provides an SM-based
approach to infer key QoE metrics in the case of unencrypted
HAS. eMIMIC extends session modeling for QoE inference
in encrypted HAS.

IV. METHODOLOGY

This section describes the HAS chunked delivery princi-
ples used for reconstructing video sessions using eMIMIC,
the challenges and solutions in extracting chunk-level details
of the session, and how QoE metrics are inferred.
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Fig. 2. Data flow of chunk requests and responses.

A. Chunked Video Delivery in HAS

In HAS, a video is split into chunks which are typically
of same duration. Each of these chunks are encoded at pre-
defined quality levels determined by encoding bitrate and
resolution and hosted on a standard HTTP server. The video
player at the client has a bitrate adaptation logic that decides
the bitrate of media chunks to download. The video metadata
such as chunk encoding levels and request URI is obtained by
downloading a manifest file at the beginning of video session.

The network traffic corresponding to the media chunks in
an HAS video session consists of a sequence of HTTP GET
requests and responses. When the client requests the video, the
player first downloads the manifest file by sending an HTTP
GET request to the server. The player then sends an HTTP
GET request for the first chunk. Once the video chunk has
been fully downloaded, the player sends the request for the
next chunk, whose bitrate is decided based on the past chunk
throughput and/or current buffer occupancy [31], and this pro-
cess repeats (Figure 2). The video session at the client can
be modeled using this strong serial request-response pattern
corresponding to chunk downloads observed on the network.

B. Challenges in Designing eMIMIC

1) HTTP Request Reconstruction: An SM-based approach
abstracts an HAS video session as a sequence of video chunks
appearing as HTTP GET requests on the network. For unen-
crypted network traffic, these requests can be logged by a
passive monitor or a transparent Web proxy. However, this
does not work when Transport Layer Security (TLS) is used, as
is common today, where HTTP headers are encrypted. We note
that parsing limited clear-text TLS headers is not a feasible
approach to distinguish individual chunks, since multiple, or
even all, chunks, can be requested within one TLS transaction.

Idea: We explore if TCP headers can be used for HTTP-
level session reconstruction. Figure 2 shows the flow of video
data for a sequence of HTTP requests and responses on a
single TCP connection. The data flow in an HTTP transaction
has an important traffic directionality property, i.e., request
flows from client to server, followed by response flowing in the
opposite direction. This directionality and sequence in the data
flow of HTTP traffic can be used to identify the boundaries
of HTTP request-response pairs. This methodology has been
used to identify the size of Web objects in HTTPS traffic [32].

It is important to note that this approach would not work
correctly if the HTTP requests were pipelined. However,
in practice, video players typically do not pipeline HTTP
requests. This is because pipelining may cause self-contention

for bandwidth among the chunks, potentially causing head-of-
line blocking, as well as diminishing the ability of the player
to quickly adapt to changing network conditions.

Solution: For a TCP-flow f corresponding to video ses-
sion V , we log the source IP address of every packet in the
flow. A packet with non-zero payload size is tagged as an
HTTP request if the source IP address matches the client IP
address. The subsequent non-zero payload size packets in f
with the server IP address as the source are tagged as the HTTP
response. The end of the response is determined by one of the
following conditions: i) a new packet from the client on the
same flow indicating a new HTTP request or ii) an inactivity
period of greater than some pre-defined threshold (5 seconds
in our experiments) or iii) the closing of the TCP connection
indicated by TCP RST or FIN flag. In addition, TCP retrans-
missions are logged. The size of the response is estimated by
adding the payload sizes of all the packets tagged as response
and adjusted to account for re-transmissions. The start time
and the end time of an HTTP transaction are obtained from
the timestamp of the first packet tagged as a request and the
last packet tagged in the corresponding response, respectively.
TCP ACKs with no payload are ignored.

Applying this approach to all TCP flows in a video session,
we can reconstruct HTTP transactions, along with the size
(Si ) and download start time (STi ) and end time (ETi ) for
every chunk i. This approach can also be applied to UDP-based
transport such as QUIC, assuming the same request-response
sequence, but without accounting for retransmissions or using
TCP flags for response termination.

2) Media Type Classification: The reconstructed HTTP
transactions in the above methodology will include multiple
media types namely video, audio, and metadata, such as the
manifest file. Some services separate audio and video content
which means that they appear as separate transactions in the
network traffic. To model a session, it is important to iden-
tify video (and audio, if separate) chunks and filter out the
metadata.

Idea: We use the estimated response sizes obtained from
the HTTP reconstruction step to identify the media type. The
size of metadata is usually smaller than audio or video as it
consists of text files. Audio chunks are encoded at Constant
Bit Rate (CBR) with one or two bitrates levels. Thus, they can
be identified based on the size and its consistency.

Figure 3a illustrates this by showing the distribution of
response sizes of video, audio and metadata obtained from
the HTTP logs of 1005 VOD2 sessions collected by a trusted
proxy (see Section V for details). The media type is identified
from the request URI of the HTTP logs. Metadata HTTP logs
are smaller than 30 KB and most of the audio HTTP logs
are around 42 KB. However, we observe a small proportion
of video chunks that are similar in size to audio chunks. To
reduce the probability of misclassifying these as audio, we use
the insight that audio and video playback is synchronized, and
hence the amount of audio and video downloaded and stored
in the buffer should be similar in terms of duration.

Solution: We first determine a minimum size threshold
(Smin ) for identifying HTTP transactions corresponding to
the metadata. This is based on the minimum bitrate levels
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Fig. 3. Chunk and bitrate characterization for VOD2.

of video and audio obtained by inspecting manifest files of
several videos. For services that separate audio and video, the
expected response size of audio chunks is calculated based
on the audio bitrates used. A range [Amin , Amax ] is deter-
mined to identify an HTTP transaction corresponding to the
audio chunks. We use a range instead of a single value for
two reasons: i) there exist small variations in size of the audio
chunks despite being CBR encoded; ii) the estimated size of
reconstructed HTTP transaction may have errors. Furthermore,
to avoid misclassifying a video chunk with actual size in the
expected audio size range, we track the audio and video con-
tent downloaded in seconds. We fix a threshold Tahead such
that the audio content downloaded so far is no more than
Tahead seconds of the downloaded video content.

Thus, a reconstructed transaction is tagged as metadata if
its size is less than Smin ; as audio if its size is in the range
[Amin , Amax ] and the audio content downloaded is at most
Tahead seconds more than video; and as video otherwise.

3) Estimating Bitrate of Video Chunks: After identifying
the video chunks in a session, we need to estimate their bitrate.
This is used to calculate average bitrate and bitrate switches.

Idea: One way to estimate chunk bitrate is to use its esti-
mated size. More specifically, we can divide the chunk size
by its duration and assign it to the nearest bitrate in the
bitrate set of the video service. However, video services typ-
ically use Variable Bit Rate (VBR) encoding, which means
that the chunk size can deviate, sometimes significantly, from
the average bitrates based on the underlying video scene com-
plexity. Figure 3b illustrates this by showing the distribution
of chunk sizes (from HTTP logs) with their average bitrate
levels (from request URI) for the 1005 VOD2 video sessions.
The majority of chunk sizes are a close match to the average
bitrates. However, there are cases where the chunk sizes over-
lap between two consecutive bitrate levels. Thus, using size
alone can lead to errors in bitrate estimation.

To overcome this problem, we use an additional insight that
players usually switch bitrate when the network bandwidth
changes. Thus, a bitrate switch would be most likely accompa-
nied by a change in past chunk throughput that is in the same
direction as the bitrate switch. Thus, using both chunk size
and observed throughput of previously downloaded chunks can
improve the accuracy of bitrate estimation of a chunk.

Solution: We first estimate the bitrate of a chunk i using
its size (Si ). If the estimated bitrate (Q̂i ) is the same as
the previous chunk’s estimated bitrate (Q̂i−1), we keep this

estimate and move to next chunk. However, if there is a
switch in the estimate, we compare the download through-
put observed for chunk i − 1 and i − 2, say Ti−1 and
Ti−2. We approve a change in bitrate if |Ti−1 − Ti−2| ≥
|Q̂i − Q̂i−1| (a change in network throughput is detected) and
(Ti−1−Ti−2)×(Q̂i −Q̂i−1) > 0 (throughput changed in the
same direction as bitrate switch). In case of a bitrate up-switch
according to chunk size, we also check if Ti−1 is greater than
Q̂i . For the first two chunks, we just use the chunk size to esti-
mate its bitrate as we do not have enough information about
chunk throughput.

C. QoE Metrics Inference

Using the above approach for a session V, we get a sequence
of video chunks along with estimates of the download start
time (STi ), download end time (ETi ), and bitrate (Q̂i ) for
every chunk i. Let N denote the number of chunks observed
in the session and L be the chunk duration in seconds. QoE
metrics are estimated from this information as follows.

Average bitrate: Average bitrate is estimated by taking an
average of the estimated bitrates of chunks in the session.

B̂R =
∑N

i=1 Q̂i

N
(1)

Re-buffering ratio: Intuitively, re-buffering time is estimated
by keeping an account of video chunks that have been down-
loaded and the part of the video that should have been played
so far. Let Bi denote the video buffer occupancy in seconds
just before chunk i was downloaded. The re-buffering time
between two consecutive chunk download times, ETi and
ETi−1, is represented by bi . Let j denote the index of chunk
after which the playback resumed since last re-buffering event,
and CTS denote the minimum number of chunks required in
the buffer to start playback. In the beginning, j = CTS and
bk = 0 for k ≤ CTS as the waiting time before video startup
is considered as startup time by definition. For each subsequent
chunk i, Bi is calculated as follows:

Bi = max
(
(i − 1 − j + CTS ) × L − (

ETi − ETj
)
, 0

)
(2)

Here, (i − 1 − j + CTS) × L represents the video content
that has been downloaded, and ETi −ETj represents the total
video that should have been played since the playback began
last time. If Bi > 0, then bi = 0 and we move to next chunk.
Otherwise, re-buffering occured and is calculated as follows:

bi =
(
ETi − ETj

) − (i − 1 − j + CTS ) × L (3)

In this case, video playback would begin after downloading
CTS chunks. Thus, value of j is set to i + CTS − 1 and
parameter bk for chunk k ∈ {i + 1, i + CTS − 1} is set as
ETk −ETk−1. The remaining bi values can be obtained in a
similar way. Re-buffering ratio can be calculated as follows:

R̂R =
∑N

k=1 bk
N × L +

∑N
k=1 bk

. (4)

Bitrate switches: The number of bitrate switches are cal-
culated by counting the total number of times the estimated
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Fig. 4. Experiment framework and evaluation methodology.

chunk bitrate changed between consecutive chunks. We nor-
malize this number by the total video streamed in minutes and
estimate bitrate Switches Per Minute (SPM).

ˆSPM =

∑N
i=2 I

(
Q̂i �= Q̂i−1

)
× 60

N × L
(5)

Here I is the indicator function which equals one if the
consecutive chunks do not have same bitrate, zero otherwise.

Startup time: We use the time taken to download minimum
number of chunks to begin playback, denoted by TTNC as
a proxy for startup time. Note that normally startup time is
defined as the time taken to play the video from the time user
opened the video and constitues of following delays:

ST = Tloading + TTNC + Tdecode (6)

Here, Tloading is the time to prepare the video, includ-
ing delays like rights management. Tdecode is time to decode
and render the downloaded chunks on screen. Tloading and
Tdecode are mostly application induced, while TTNC depends
on the network. An operator would like to monitor only the
network contribution (TTNC) to startup time since improving
the network does not directly impact the other two delays.
Therefore, we use TTNC as a proxy for startup time.

V. EVALUATION

We first evaluate eMIMIC over two popular VoD services.
More specifically, we consider the following in our evalua-
tion: i) accuracy of HTTP request reconstruction, ii) accuracy
of media type classification, and iii) accuracy of QoE met-
rics estimation. This is followed by a comparison of eMIMIC
with a recently proposed ML-based approach (ML16). We then
validate eMIMIC over a Live streaming service, and finally
evaluate the accuracy of eMIMIC in estimating the QoE met-
rics in real-time. We begin by describing our experimental
setup.

A. Experimental Setup

We build an automated browser-based framework that
streams video sessions of a video service in a Web browser
under emulated network conditions and collects packet traces,
HTTP traces and ground truth video QoE metrics (see
Figure 4). We use Java implementation of a popular browser
automation framework, known as Selenium.1 The HTTP logs

1www.seleniumhq.org

Fig. 5. Bandwidth traces and session duration.

of encrypted sessions are collected using a trusted proxy,
BrowserMob proxy,2 that is easy to integrate with Selenium.
We use TShark3 for capturing packet-level network traffic
and Linux Traffic Control (tc) to emulate different network
conditions.

Video sessions: We use two popular premium video services
that stream Video on Demand (VoD). VOD1 streams primar-
ily full-length movies, with some TV show selection, offering
content in many countries world-wide. VOD2 is a U.S. VoD
service offering primarily popular TV shows, including also
full-length movies. Both services are available on most mobile
and desktop devices, with up to 1080p video resolutions.
Evaluating with two different video services helps in under-
standing the impact of differences in service design parameters
on the accuracy of eMIMIC. We collected URIs of 100 videos
each from both services, covering different genres such as ani-
mated videos, talk shows and action movies. The intent was
to capture a diversity of content complexities and encoding
bitrates. The duration of each session is pre-determined based
on a distribution obtained from the video network dataset col-
lected in [10] and is shown in Figure 5a. The distribution
ranges from 2 to 20 minutes with a mean of 5 minutes.

Bandwidth traces: We use the following throughput traces
to evaluate eMIMIC under realistic network conditions:

• Norway 3G dataset [33] consists of per-second through-
put measurements from mobile devices streaming videos
while connected to a 3G/HSDPA network.

• Belgium LTE dataset [34] is similar to Norway 3G but
the network is LTE, resulting in higher throughput.

• FCC dataset [35] consists of per-5 seconds throughput
measurements of broadband networks. We sample traces
from this dataset with the same end-points and an average
throughput under 3 Mbps to induce bitrate switching and
make it more challenging to estimate QoE metrics.

Figure 5b shows the CDF of average bandwidth of these traces.
Ground truth QoE metrics: These metrics in video stream-

ing are available within the video player itself. We monitor the
player buffer using the JavaScript API exposed by the Video
element of the HTML5 MSE-based video players of these
services. We found two functions, buffered and played,
that return the range of video content that has been buffered
and played, respectively. Calling them together enables us to

2bmp.lightbody.net
3www.wireshark.org/docs/man-pages/tshark.html
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Fig. 6. CDF of ground truth QoE metrics.

TABLE I
DESIGN PARAMETERS OF VOD1 AND VOD2

infer the size of buffer. However, it still does not give any
information about other QoE metrics such as video bitrate.

We then explore the APIs available in the minified
JavaScript source of the video players of the two video
services. We found a function for VOD1, which when called
returns the size of the buffered content in seconds and bytes,
bitrate of the currently playing video and a boolean variable
indicating if the playback is currently stalled. In our test-
ing framework, we insert per-second calls to this function.
Similarly, for VOD2 we found a function which closes the
video playback and returns a session-summary of all the video
QoE metrics, including average bitrate, re-buffering duration,
number of bitrate switches and time taken to download the
first chunk (TT1C). We insert a call to this function in our
experiments at the end of the video session. Thus, by hooking
into the functions of these players, we can obtain per-second
ground truth QoE metrics for VOD1 and per-session ground
truth QoE metrics for VOD2.

Obtaining video service design parameters: eMIMIC needs
to know a few design parameters of a video service. The chunk
duration is estimated by playing several video sessions com-
pletely and determining the number of chunks downloaded
from HTTP logs. Video play time divided by the number of
chunks gives average chunk duration. The bitrate levels for
VOD2 are obtained by inspecting the manifest of few videos.
VOD1 uses different bitrate levels across videos. As getting
per-video bitrate levels is infeasible, we use approximate lev-
els obtained by averaging bitrate levels observed for multiple
videos. The number of chunks required to start (CTS) playing
is obtained by inspecting the manifest for VOD2. For VOD1,
we streamed several video sessions and collected the ground
truth QoE metrics using the methodology described above.
Using these metrics, we found that CTS varied but was always
greater than 2, which we assume as CTS for VOD1. Table I
summarizes the values of these design parameters. We note
that these design parameters are prone to change for a service

which can impact eMIMIC performance. In future, we plan to
devise methods to automatically detect these changes.

Based on the obtained (or inferred, if needed) design param-
eters, we set Smin to 35 KB and Tahead to 40s for both
services. We use two ranges, i.e., [126 KB, 136 KB] and
[190 KB, 200 KB], and a single range, i.e., [40 KB, 50 KB] for
identifying audio chunks in VOD1 and VOD2, respectively.
We currently infer the video service design parameters and
the corresponding eMIMIC parameters manually. Our future
work will explore methods to automate this process so that
any changes in the video design parameters can be detected
and accommodated automatically.

Experiment: We use our testbed to stream video sessions
from both VOD1 and VOD2 in Firefox. The bandwidth con-
ditions in a session are emulated based on a trace selected
randomly from the set of bandwidth traces. The packet traces,
HTTP logs, and ground truth QoE metrics collected using the
testbed are stored after the end of the session. In total, we ran
985 sessions for VOD1 and 1005 sessions for VOD2. Figure 6
shows the CDF of different ground truth QoE metrics for these
sessions.

B. Session Reconstruction Accuracy

We first evaluate the accuracy of eMIMIC in reconstruct-
ing HTTP transactions corresponding to audio and video in
a session. We filter out transactions less than Smin from
the reconstructed HTTP transactions. We then match the
remaining transactions with the ground truth HTTP logs corre-
sponding to audio and video collected using trusted proxy. The
matching process works as follows: for every reconstructed
HTTP transaction of size greater than Smin , we search for an
HTTP log in the corresponding proxy logs which has a start
time within 500 milliseconds of the start time of the recon-
structed transaction. If a matching log is found, we consider it
as true transaction and remove the ground truth HTTP log. If
there are multiple matches found, we use the one closest in size
to the reconstructed log’s size. After this matching process is
finished, the unmatched reconstructed HTTP transactions are
tagged as extra, and the unmatched ground truth HTTP logs
are tagged as missing transactions.

Figure 7a shows a CDF of percentage of extra transactions
(negative value denotes missing transactions) in a session. We
find that the accuracy of reconstruction is high with 80% of
sessions from VOD2 reconstructed with 100% accuracy. The
lower accuracy of reconstruction for VOD1 is because few
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Fig. 7. HTTP request reconstruction accuracy.

TABLE II
MEDIA CLASSIFICATION CONFUSION MATRIX FOR VOD1

metadata transactions in VOD1 are comparable in size to video
and get misclassified as video.

Figure 7b shows the CDF of median percentage error in
the estimated size of reconstructed transactions. Note that it is
important to accurately estimate the size of transaction as it is
used to identify video chunks and their bitrates. The median
error is within 1% of the actual size of HTTP transaction
for both VOD1 and VOD2 which suggests that eMIMIC can
estimate the size of HTTP transactions accurately.

C. Media Type Classification Accuracy

Table IIa shows the confusion matrix of audio/video (A/V)
classification of the reconstructed HTTP transactions for
VOD1. The ground truth was obtained by inspecting the
request URI of HTTP logs collected by the proxy. The overall
accuracy of classification is high (99.15%). The classification
error is mainly due to two reasons: i) small video chunks in
the range of expected audio chunk size get misclassified as
audio ii) errors in estimated size of reconstructed audio chunk
leads to audio chunk misclassified as video. The results are
similar for VOD2 (omitted due to lack of space).

We also show the confusion matrix (Table IIb) when the
A/V classification is done only using the size of the HTTP
transaction. Tracking A/V buffer (Table IIa) helps in reducing
the error of misclassifying video chunks as audio by 1.26%
without significantly impacting the error in misclassifying
audio chunks as video.

D. QoE Inference Accuracy

Here, we present the comparison of QoE metrics estimated
by eMIMIC with ground truth QoE metrics.

Average bitrate: Figure 8a shows the CDF of difference in
estimated and ground truth average bitrate, denoted by δBR ,
for VOD1 and VOD2. We see that eMIMIC accurately pre-
dicts average bitrate within an error of 100 kbps for 75%
sessions in VOD1 and 80% sessions in VOD2. The error is in
fact zero for nearly 20% sessions in VOD2. We do not observe

Fig. 8. Error in average bitrate estimation.

Fig. 9. CDF of error in re-buffering ratio estimation.

Fig. 10. CDF of chunks in the buffer at startup.

zero error in VOD1 partially because we do not know the exact
values of bitrate levels and use approximate values instead.

Figure 8b shows a scatter plot of ground truth average
bitrate and estimated average bitrate for VOD2 sessions. The
points are close to the identity line in most cases except at
higher bitrates (around 4 Mbps). We found this is because of
eMIMIC underestimating chunks with bitrate 3.2 Mbps and
6 Mbps due to higher variation in the chunk sizes in this range.
Nevertheless, these are still estimated as more than 2 Mbps,
which would be considered high bitrate for most purposes, if
used for categorical classification.

Re-buffering ratio: We calculate the difference (δRR)
between the estimated re-buffering ratio and ground truth re-
buffering ratio. Figure 9 shows a CDF of δRR for VOD1 and
VOD2. We see that eMIMIC can predict re-buffering ratio
with a high overall accuracy, i.e., within an error of 1% for
around 70% sessions in VOD1 and 65% sessions in VOD2.

We observe heavy-tails in δRR distribution for VOD1. On
closer inspection, we found this has to do with an unusual
buffering behavior in VOD1 player. The player would not
begin a session even if it had video (and audio) chunks in its
buffer. Figure 10 shows the CDF of number of video chunks
in player buffer when the playback first started. The player
sometimes waits until it has 12 chunks (48s video) in its buffer
before starting video playback. Similar behavior was also seen
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Fig. 11. Error in estimating the bitrate switches and startup time.

when re-buffering event happened. This leads to errors in esti-
mating re-buffering ratio since we assume that playback begins
as soon as player receives a fixed number of chunks (two in
this case) in its buffer.

Bitrate switches: Figure 11a shows a scatter plot of ground
truth and estimated SPM for VOD1. We find that eMIMIC
does not estimate SPM with high accuracy. This is because
accurate bitrate switch estimation requires accurate estimate
of bitrate of every video chunk in a session. Even a single
wrong bitrate estimation of chunk can lead to significant errors
in SPM estimation. We plan to explore alternate methods of
bitrate switch estimation in our future work.

Startup time: Figure 11b shows a scatter plot of ground truth
and estimated TT1C for VOD2. For most sessions, the network
estimated TT1C is somewhat smaller than ground truth TT1C
obtained from the player. This underestimation has been dis-
cussed in a previous study [9] and is mainly because the
players experience additional network and operating system
delays before they receive a chunk. Overall, eMIMIC shows
high accuracy. It can predict startup delay within 2 seconds of
ground truth for 65% sessions in VOD1 and 70% sessions in
VOD2.

E. Comparison With ML-Based Approach

Here, we compare eMIMIC with ML16, an ML-based
approach described by Dimopoulos et al. [7]. We use this
approach for comparison because it gives categorical esti-
mates of individual video metrics namely re-buffering ratio
and average bitrate as opposed to other ML-based approaches
that estimate overall QoE class assuming a specific model.
The approach trains a Random Forest model using network
QoS metrics such as round trip time and packet loss and
chunk statistics such as size and download time. We imple-
ment ML16 using the scikit-learn library [36] in Python. We
use 67% of our collected data for training the machine learn-
ing model and use remaining 33% for testing both ML16 and
eMIMIC. We balance the QoE metric classes while training
using a popular oversampling algorithm [37].

Average bitrate: We use three categories for average bitrate
estimation. For VOD2, average bitrate is classified as low if
BR < 800 kbps, med if BR ∈ [800 kbps, 2000 kbps], and
high otherwise. The low bitrate category corresponds to the
two lowest bitrates, med to the next two bitrates and high to
the top two bitrates. Similarly, thresholds of 600 kbps and
1400 kbps are chosen to classify sessions of VOD1 into low,

TABLE III
CLASSIFICATION ACCURACY OF EMIMIC AND ML16

TABLE IV
CONFUSION MATRIX: VOD1 AVERAGE BITRATE

TABLE V
CONFUSION MATRIX: VOD2 RE-BUFFERING RATIO

med and high. The overall classification accuracy of eMIMIC
is slightly higher (around 3%) than ML16 (row 1 of Table III).
Table IV shows the confusion matrix of bitrate classification
for VOD1. eMIMIC identifies low and med sessions with a
higher accuracy, 2% and 7% respectively, than ML16.

Re-buffering ratio: For estimating re-buffering using ML16,
a video is categorized into one of the following three cate-
gories (same as in [7]): zero stall when there is no re-buffering,
mild stalls when 0 < RR ≤ 10%, and high stalls when
RR > 10%. ML16 was trained separately for both VOD1
and VOD2. Row 2 in Table III shows the re-buffering ratio
classification accuracy of eMIMIC and ML16 over the test
data. eMIMIC can estimate re-buffering ratio with signifi-
cantly higher accuracy (10%-25%) than ML16. Table V shows
the confusion matrix for re-buffering classification of VOD2.
eMIMIC can predict low and high stalls with much higher
accuracy than ML16. The accuracy of ML16 may improve
with more training data.

Finally, we test if ML16 generalizes across services by using
the ML16 model learned for VOD2 to estimate re-buffering
ratio for VOD1. The classification accuracy of the model
dropped to 31% on VOD1 from 61% on VOD2. This shows
that ML16 does not generalize and needs separate training for
each service whereas eMIMIC faces no such issues.

F. QoE Inference Accuracy for a Live Service

Live streaming has been growing over the last few
years [38]. Live video differs from VoD in terms of few key
design parameters, i) the buffer in Live streaming is small to
reduce the latency to the live broadcast. As a result video play-
ers in Live may react more aggressively to changing network
conditions leading to more bitrate switches. ii) At the same
time. Live streams are not as efficiently encoded, which may
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Fig. 12. LIVE1: Session reconstruction and QoE metrics estimation error.

TABLE VI
DESIGN PARAMETERS OF LIVE1

lead to better bitrate estimation, due to less variability in seg-
ment sizes. These design differences make it important to
understand the accuracy of eMIMIC in estimating QoE metrics
for Live streaming. We use a popular subscription-based Live
streaming service, referred to as LIVE1 here. LIVE1 deliv-
ers content from popular cable channels over the Internet.
Table VI shows the design parameters for LIVE1, obtained by
the methodology described in Section V-A. Based on these
design parameters, we set Smin to 30 KB and use three
ranges to identify audio chunks, i.e., [34 KB, 42 KB], [46 KB,
54 KB], and [70 KB, 76 KB]. We set Tahead to 12 seconds
as we found that the typical buffer size for the service is close
to 12 seconds.

For obtaining ground truth QoE metrics in LIVE1, we found
a combination of keystrokes, which when pressed, displays a
box showing the different metrics such as the current playback
bitrate, available bitrates, and video stall time. We program our
testing framework to collect this information every second.
We then use the testing framework to stream 629 sessions
of LIVE1 under variety of network conditions and collect the
corresponding packet traces, HTTP logs, and ground truth QoE
metrics.

Session reconstruction accuracy: Figure 12a shows the CDF
of percentage of extra transactions (calculation methodology
described in Section V-B) in a session. The accuracy of recon-
struction is high in general with around nearly 80% of sessions
reconstructed with 100% accuracy. We do find few extra trans-
actions in some sessions which are mainly because of two
reasons: 1) metadata transactions that are comparable in size
to video transactions get misclassified as video, and 2) HTTP
aborts that happen more frequently in Live are not detected
accurately. The estimated size of matched transactions is quite
accurate with the median error within 1% of the actual size of
HTTP transaction for nearly 90% of sessions (see Figure 12b).

QoE estimation accuracy: Figure 12c shows the CDF of
difference in estimated and ground truth average bitrate (δBR).
eMIMIC can accurately predict average bitrate within an error

of 100 kbps for 75% sessions with zero error for nearly 20%
sessions. The difference between the estimated re-buffering
ratio and ground truth re-buffering ratio, denoted by δRR , is
shown in Figure 12d. We see that eMIMIC can estimate re-
buffering ratio within 1% of the ground truth for 80% of the
sessions. We observe that eMIMIC tends to underestimate the
re-buffering ratio for LIVE1 sessions. This can be attributed
to errors in the session reconstruction step, where some non-
video chunks are identified as video, leading to overestimation
of video buffer, and hence underestimation of re-buffering.

G. Real-Time QoE Inference

Our evaluation, so far, has focused on understanding accu-
racy of eMIMIC in estimating QoE metrics over the entire
session. An operator may want to infer video QoE metrics
in real-time for QoE-aware active network resource manage-
ment. For instance, the operator may temporarily boost the
available bandwidth for sessions with low buffer occupancy
in order to reduce the probability of re-buffering [39]. In this
section, we evaluate the accuracy of eMIMIC in making such
real-time prediction of QoE metrics. We limit our analysis to
sessions from VOD1, as we have fine-granular ground truth
QoE metrics only for VOD1.

Buffer occupancy: We evaluate the accuracy of eMIMIC
in identifying low buffer occupancy conditions in a session.
More specifically, for a window of Tclass seconds within a
session, the buffer occupancy is classified as low, if the buffer
occupancy is lower than a threshold (Cbuff ) at any point of
time in the window, and high otherwise. An operator could set
different values for Tclass and Cbuff based on some policy.

We first evaluate the impact of varying Tclass , using
20 seconds as the buffer occupancy threshold. Table VII
shows the accuracy, precision, and recall values for differ-
ent classification windows ranging from 5 seconds (short-term
variations) to 1 minute (long-term degradation). We consider
an instance to be a true positive if it is correctly identified
as a low buffer occupancy instance. We observe that accu-
racy of correctly classifying buffer occupancy state is at least
90.0%, and it increases as the duration of classification win-
dow increases. The precision of classification is low (54.7%
- 65.4%), while the recall is high (95.1% - 97.9%). This
means that eMIMIC can correctly classify most of the low
buffer occupancy instances, while a few high buffer occupancy
instances are misclassified as low. Note that from a network
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TABLE VII
IMPACT OF WINDOW ON BUFFER OCCUPANCY

CLASSIFICATION, Cbuff = 20 SECONDS

TABLE VIII
IMPACT OF THRESHOLD ON BUFFER OCCUPANCY

CLASSIFICATION, Tclass = 10 SECONDS

operator’s perspective, it is more important to correctly iden-
tify all instances of low buffer occupancy (high recall), so that
appropriate actions can be taken to reduce the probability of
video re-buffering.

Similarly, we vary the buffer occupancy threshold (Cbuff )
for a fixed classification window of 10 seconds. The accuracy
of classification decreases while precision and recall increase
with increase in Cbuff (see Table VIII). This is because both
the number of low buffer occupancy instances correctly classi-
fied as low and the number of high buffer occupancy instances
misclassified as low increase as the buffer occupancy threshold
is increased.

Thus, eMIMIC estimates the buffer occupancy states with
a high overall accuracy (89.6% - 91.8%). Moreover, it tends
to underestimate buffer occupancy for VOD1 in general. This
leads to a higher chance of misclassifying a high buffer occu-
pancy state as low. However, it also leads to a high recall
(95.1% - 98.0%), i.e., a higher probability of correctly detect-
ing a low buffer occupancy state, which is desirable for an
operator.

Average bitrate: Similar to buffer occupancy, an operator
could allocate more resources to sessions downloading low
quality of video chunks. We evaluate the accuracy of eMIMIC
in classifying the average bitrate class of a fixed number of
most recently downloaded chunks (Nclass ). More specifically,
we classify the bitrate as low if the average bitrate of the last
Nclass downloaded chunks is lower than a threshold bitrate
(Cbitrate ) and high, otherwise. We study the effect of varying
Nclass and Cbitrate on classification accuracy.

Table IX shows the accuracy, precision, and recall as Nclass
varies from 2 chunks (considered instantaneous quality) to 16
chunks (consider long-term quality) with a bitrate threshold
of 600 kbps. Note that a classification instance is considered
to be a true positive, if it has been correctly classified as a
low average bitrate. The overall accuracy of classification is

TABLE IX
IMPACT OF NUMBER OF LAST DOWNLOADED CHUNKS ON

BITRATE CLASSIFICATION, Cbitrate = 600 kbps

TABLE X
IMPACT OF THRESHOLD ON BITRATE CLASSIFICATION,

Nclass = 4 CHUNKS

at least 85.7%. Furthermore, the accuracy increases with the
increasing number of recently downloaded chunks considered
for average bitrate classification. This is because using fewer
chunks for classification is more sensitive to any errors in
bitrate estimation of individual chunks as opposed to using
more chunks. We also observe high precision and recall val-
ues, 87.6%-90.1% and 88.9%-93.2%, respectively. The recall
values increases as Nclass increases, thus leading to higher
probability of identifying sessions with low bitrate chunks.

Similarly, we study the impact of varying the bitrate thresh-
old on accuracy, while using the last 4 chunks for bitrate
classification (see Table X). The classification accuracy is
at least 85.9%. We also observe that all three metrics, i.e.,
accuracy, precision, and recall improve as bitrate threshold is
increased. This is because, the difference in bitrates of chunks
corresponding to lower video quality levels is smaller, and it
increases with higher quality levels. Given that video chunks
in VOD1 are VBR-encoded, there is a higher overlap in chunk
sizes of lower bitrate levels than higher bitrate levels. Thus,
errors in individual chunk bitrate estimation become smaller as
the chunk quality increases, ultimately leading to an increase
in classification accuracy when a high bitrate threshold is used.

This shows that eMIMIC can estimate average bitrate class
of most recently downloaded chunks with high accuracy,
precision, and recall.

VI. DISCUSSION AND FUTURE WORK

We discuss three outstanding issues pertaining to video QoE
inference from passive network measurements.

A. Scalability

QoE inference approaches fundamentally require processing
of network data. This network data can be enormous given
the scale of today’s networks, thus raising the need to design
scalable inference systems.
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One way to handle scalability is to leverage the trend of vir-
tualization of network functions by operators [40]. Specifically,
virtualization enables the design of flexible software-based
network monitors that can be customized to meet the mon-
itoring requirements of underlying inference approach. For
instance, in the case of eMIMIC, network monitors can be
designed that reconstruct the HTTP transactions in a flow
instead of simply collecting and storing the entire packet traces
for offline processing. This significantly reduces the storage
and transport overhead of the collected data.

Sampling is another way to mitigate the issue of scaling by
reducing the collected network data. The sampling of network
data can be done in two ways. The first way is to sample video
flows and monitor only a subset of video sessions instead of
all sessions on the network. This can be useful if the goal
is to understand and optimize the video performance in the
network at a macro-level instead of optimizing per-user video
performance. The challenge here is to determine the optimal
sampling level such that the network data collected is mini-
mized but it still provides enough information about the video
performance at different network locations.

Another way to use sampling is to sample packets within
a flow. However, packet sampling could potentially lead to
the loss of critical information required for QoE inference.
Therefore, appropriate packet sampling mechanisms need to
be used based on the underlying QoE inference technique.
For instance, eMIMIC could still work if packet sampling
is used for downlink traffic while completely monitoring the
uplink traffic. This is because eMIMIC uses the uplink traffic
to identify the HTTP transaction boundaries and the down-
link traffic to identify the size of the HTTP transactions.
Sampling in uplink direction can lead to errors in identify-
ing the HTTP transactions. However, the transaction size can
still be determined from the sampled downlink traffic with
reasonable accuracy.

Our future work will consider evaluating the usefulness
of these techniques to implement a scalable QoE inference
monitoring system.

B. QoE Inference for New Protocols

QoE inference approaches are typically designed for spe-
cific application and transport-layer protocols. However, these
protocols constantly evolve, thus requiring continuous re-
calibration of the inference approach. For instance, eMIMIC
has been designed for traditional HAS that uses HTTP over
TCP. It uses TCP headers in the packets to reconstruct the
HTTP transactions. However, TCP headers are no longer
available in QUIC [41], a UDP-based protocol, requiring re-
calibration of eMIMIC. In our future work, we will explore
using IP headers to reconstruct a session for video services
using QUIC.

Another issue with new protocols such as QUIC and
HTTP/2 [42] is that they allow request multiplexing. For
eMIMIC, it can lead to error in session reconstruction as
a new uplink packet is assumed as an indicator of end of
the last HTTP transaction and beginning of a new transac-
tion. However, it is not clear if the streaming services would

use request multiplexing in practice as it leads to resource
contention and reduced flexibility of bitrate adaptation (see
Section IV-B1). One possible use case of multiplexing in
streaming could be requesting the audio and video chunks for
the same video segment in parallel. In our future work, we plan
to characterize the multiplexing behavior of video streaming
services that use these new protocols and adapt eMIMIC based
on the observed behavior.

C. Impact of User Interaction

Existing QoE inference approaches, including eMIMIC,
typically consider a linear video playback, i.e., there is no
content skip or pause during the session. In practice, user
interactions could be possible in a session and that can lead to
errors in QoE inference. For instance, in the case of eMIMIC,
video skip would lead to overestimation of the video buffer
as it would not know that part of the video buffer would
have been discarded due to the skip. Similarly, in the case of
a video pause, eMIMIC would continue depleting the video
buffer assuming linear playback leading to overestimation of
re-buffering. Although an operator may not be as much con-
cerned about video pause as about video skip, because it can
miss a potential QoE impairment in the latter case.

One way to detect video skip in eMIMIC is by carefully
monitoring the player buffer evolution. Video players typically
have a fixed size (either number of bytes or duration) buffer.
If eMIMIC’s video buffer estimate at any point in the session
is significantly higher than the maximum buffer size, there is
a possibility that the user skipped part of the video and the
operator can discard the session from QoE inference. Note that
it still does not enable us to detect a skip in case the buffer
level is lower than the maximum buffer in a session. Designing
methods to detect and handle user interactions is a part of our
future work.

VII. CONCLUSION

We present eMIMIC, a methodology to estimate QoE met-
rics of encrypted video using passive network measurements.
To facilitate extensive evaluation, we develop an experimental
framework that enables automated streaming and collection of
network traces and ground truth QoE metrics of three popular
video service providers, including both VoD and live content.
Using the framework, we demonstrate that eMIMIC shows
high accuracy of QoE metrics estimation for a variety of real-
istic network conditions. We compare eMIMIC with ML16, a
machine learning-based approach and find that eMIMIC out-
performs ML16 without requiring any training on ground truth
QoE metrics. We finally show that eMIMIC can also be used
for estimating QoE metrics in real-time with a high accuracy,
thus enabling operators to detect any QoE degradation in the
network.
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