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ABSTRACT
Understanding end-user video Quality of Experience (QoE) is im-

portant for Internet Service Providers (ISPs). Existing work presents

mechanisms that use network measurement data to estimate video

QoE. Most of these mechanisms assume access to packet-level

traces, the most-detailed data available from the network. However,

collecting packet-level traces can be challenging at a network-wide

scale. Therefore, we ask:“Is it feasible to estimate video QoE with

lightweight, readily-available, but coarse-grained network data?”

We specifically consider data in the form of Transport Layer Secu-

rity (TLS) transactions that can be collected using a standard proxy

and present a machine learning-based methodology to estimate

QoE. Our evaluation with three popular streaming services shows

that the estimation accuracy using TLS transactions is high (up to

72%) with up to 85% recall in detecting low QoE (low video quality

or high re-buffering) instances. Compared to packet traces, the es-

timation accuracy (recall) is 7% (9%) lower but has up to 60 times

lower computation overhead.
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1 INTRODUCTION
Last-mile Internet Service Providers (ISPs), especially cellular ISPs,

need to efficiently provision and manage their networks to meet the
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Figure 1: QoE inference steps

growing demand for Internet video [1, 19]. This network optimiza-

tion requires ISPs to have an in-depth understanding of end-user

video Quality of Experience (QoE). Understanding video QoE is,

however, challenging for ISPs as they generally do not have access

to applications at end-user devices. This is further exacerbated by

an increasing use of end-to-end encryption, significantly limiting

the information ISPs can obtain from the network traffic to estimate

video QoE. ISPs are thus constrained to rely on their limited view

of the network data to estimate video QoE metrics.

Video QoE estimation using network data primarily consists of

three steps: i) collecting network data using a monitoring tool, ii)

identifying video traffic and sessions from collected data, and iii)

estimating session QoE metrics using methods designed for this

purpose (see Figure 1). Prior work in this domain has mainly fo-

cused on designing QoE estimation mechanisms (step 3 in Figure 1)

with a goal to improve inference accuracy [12, 14, 17, 22, 24, 25].

In doing so, most of these mechanisms assume access to packet

traces, the most granular network data. However, collecting and

processing packet-level data from the entire network is challenging

because of the scale of ISP networks [10, 13]. At the same time,

it is important for ISPs to understand network-wide video perfor-

mance for efficient management and provisioning, especially in

the case of capacity-constrained and highly heterogeneous cellular

networks. This makes it challenging to use existing QoE estimation

mechanisms in practice.

One possible approach is to develop flexible telemetry systems

that provide the most useful metrics (e.g., HTTP transactions)

required for inference by in-network processing of the packet

data [8, 21, 28]. While this is a viable approach, it involves sig-

nificant modifications to the existing measurement systems and

has the following practical challenges, i) limited measurement re-

sources and budget with the constraint that the same network data

is often used for multiple purposes (e.g., security, performance), and

ii) limited flexibility since such tools are provided by vendors [37].

Given these challenges, we ask: “Is it feasible to detect video
performance issues with lightweight, readily-available but coarse-
grained network data?” Our question is motivated by the fact that

ISPs already collect coarse-grained data using standard telemetry

systems for different networkmanagement functions [23, 33, 35, 37].

We consider whether such data can be used by ISPs to estimate

coarse-grained QoE metrics (e.g., low, high) and thus to identify

parts of the network that underperform in a lightweight manner.

https://doi.org/10.1145/3386367.3431294
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Ultimately, this approach can enable adaptive video performance

monitoring wherein an ISP collects fine-grained data only from the

problematic locations for further diagnosis.

We specifically consider coarse-grained network data in the form

of Transport Layer Security (TLS) transactions. The data is clearly

lightweight as number of TLS transactions in a video session is

significantly smaller (by a factor of 1400 in our dataset) as compared

to packets. The data is also readily available as TLS transactions can

be collected using a transparent proxy (e.g., Squid [4]). In fact, most

cellular ISPs already use a transparent proxy for various network

management functions (e.g., traffic accounting, differentiation) and

such proxy has an off-the-shelf capability to report TLS transac-

tions [3]. Finally, video traffic can be easily identified (step 2 in

Figure 1) using the headers from TLS transaction data. Prior work

has used similar data to infer QoE for web traffic [30] and unen-

crypted video
1
[23]. A major challenge, however, is that the TLS

transaction data is coarse-grained. Thus, existing inference tech-

niques will not work on this form of data. Another challenge in

using this data is to delimit sessions
2
when a user watches back-to-

back videos from the same service. Accurate session identification

is important for accurate QoE estimation due to changes in stream-

ing patterns and the corresponding traffic within a session as it

progresses (see Section 2).

Therefore, we analyze the feasibility of using TLS transaction

data to detect video performance issues. Specifically, we consider

categorical estimation of key video QoE metrics [18, 20], namely,

video quality, re-buffering ratio and a combined QoE metric that

jointly considers the two individual metrics (Section 2). We first

develop a machine learning (ML)-based approach that builds on

previous work by adapting ML-based techniques to TLS transaction

data. We evaluate our methodology using data collected under

diverse emulated network conditions from three streaming services,

namely, YouTube, Netflix, and Hulu (anonymized in the paper). We

also compare the QoE estimation accuracy using TLS transaction

data against packet traces. Finally, we present a simple heuristic

to distinguish consecutive sessions from the same video service

leveraging TLS transaction arrival and server access patterns.

Our key findings are summarized below:

• The TLS transaction data can be used to estimate combined QoE

metric (Section 2) with an accuracy of up to 72% and detect low
QoE (low video quality or high re-buffering) instances with a

recall of 73%-85%.

• Compared to packet traceswith an existingML-based approach [12],

estimation using TLS transaction data has up to 7% (9%) lower

accuracy (recall), but it has 1400x lower memory overhead and

60x lower computation overhead.

• The session identification heuristic can accurately identify 89%

of the consecutive sessions.

2 TARGET QOE AND NETWORK DATA
Most of the Internet video is streamed using a class of techniques,

called HTTP-based Adaptive Streaming (HAS), that dynamically

adapt the video quality based on the network conditions. In HAS,

the video is divided into segments with each segment encoded

1
For unencrypted video, a proxy provides HTTP transactions

2
Our definition of a session consists of streaming a single video

into a pre-defined set of quality levels. The player at the client

downloads video segments by sending HTTP requests. The quality

of the segments is determined by the adaptation algorithm used in

the player [15, 16, 36]. Here we describe the HAS QoE metrics we

estimate and the network data used for their inference.

2.1 Target QoE metric
QoE in HAS is impacted by a variety of factors, namely, re-buffering,

video quality, startup delay, and quality variations [6, 18, 20, 26].

Existing inference approaches estimate these objective QoE met-

rics for a video session in two different ways: fine-granular and
per-session. The former estimates QoE metrics periodically within a

session while the latter provides estimates only once for the entire

session. The QoE estimation granularity of an approach is clearly

impacted by the granularity of the input network data. Given that

the data we use is coarse-granular, we consider categorical esti-

mates (i.e, low, medium, and high) of per-session video QoE metrics.

Such estimation enables ISPs to identify network locations with

video performance issues in a lightweight manner. Specifically, we

estimate the following key video QoE metrics [20]:

Re-buffering ratio (rr): It is defined as the stall time in proportion

to the total playback time and measures the severity of stalls in a

session. We classify rr into the following three categories: i) zero, if
there are no stalls, ii) mild, if 0 < rr ≤ 2%, and iii) high, otherwise.
Video quality: In HAS, videos are typically encoded into discrete

quality levels with more bits typically required to encode higher

video quality. The quality levels tend to be same for a video service

(e.g., Netflix) and streaming protocol (e.g., HLS, DASH) combina-

tion
3
. We set thresholds and categorize the quality levels to low,

medium, and high (see Section 4). The video quality of a session

is defined as the majority category of the quality level played in a

session [34]. In case of a tie, we select the lower category.

Combined QoE: We estimate the combined QoE of a session by

jointly considering the individual QoE metrics. There are a number

of ways to combine the individual metrics [6, 36]. In this paper, we

use a simple approach of using the minimum category of the two

QoE metrics. E.g., if a session had zero re-buffering but low video

quality, its overall QoE is assigned to low. Our methodology can

also work for other combinations.

Thus, for each session we estimate the categorical values of video
quality, re-buffering ratio, and combined QoE.

2.2 Network data
ISPs typically collect different kinds of data from within their

network which includes network device-level data (e.g., SNMP

logs [29]) and aggregate statistics from passive traffic monitoring

(e.g., NetFlow [9] and Proxy data [4]). Clearly, device-level data

cannot be used to even identify video traffic, let alone assess its

QoE. Therefore, we consider aggregate network traffic data that

can be collected with standard monitoring tools for QoE inference.

Specifically, we consider encrypted network traffic data in the

form of TLS transactions collected using a transparent proxy (e.g.,

Squid [4]) that inspects the unencrypted TLS headers. A major chal-

lenge, however, is that the TLS transaction data is coarse-granular.

3
Some videos may not be available at all quality levels. A service may use different

quality levels based on the content type (e.g, live, on-demand).
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Figure 2: TLS transactions with the corresponding HTTP transac-
tions within first 5 seconds of a Svc1 session. For clarity, only start
of the HTTP transactions is shown.

Figure 2 shows the TLS transactions within the first 5 seconds of

a sample session from Svc1 with the corresponding HTTP trans-

actions
4
, considered important for QoE inference in the related

work [14]. Clearly, a single TLS transaction contains multiple and

variable number of HTTP transactions. We observed an average

of 12.1 HTTP transactions corresponding to every TLS transaction

for the Svc1 sessions in our dataset (see Section 4).

It can also be challenging to correctly delimit session boundaries

using TLS transaction data if multiple videos from the same ser-

vice are watched back-to-back by a user. This is because the active

TLS transactions do not always end immediately once the player

is closed, but timeout after some duration, leading to overlapping

transactions for consecutive sessions. Therefore, a timeout-based

approach, wherein a session boundary is detected if there is no

more video traffic for a certain time, would not work. Inaccurate

session identification can lead to errors in QoE estimation due to dif-

ferences in buffering state and steady state network characteristics

in HAS [5]. Existing work suggests heuristic based on fine-granular

traffic size information [8] which will not work with TLS transac-

tion data due to its coarse-granularity.

Our goal is to analyze the feasibility of using such coarse-granular
but readily-available and lightweight data to estimate video QoE.We

consider two kinds of information available in a TLS transaction:

i) start and end time, and uplink and downlink size, and ii) Server

Name Indicator (SNI) field indicating the server hostname. We use

the former for QoE estimation and the latter for video traffic and

session identification.

We note that flow-level monitoring (e.g., NetFlow [9]) is another

popular measurement technique. In fact, flow record data with

size counters from Netflow is similar to TLS transaction data as

there is typically a single TLS transaction in a TCP connection.

Flow-level monitoring also provides an option of obtaining periodic

summaries from long flows. A major challenge, however, with

flow-level monitoring is identification of video traffic as it lacks

application-layer data. Existing work has suggested solutions like

augmenting flows with DNS information [7]. We consider using

flow-level data as a part of future work and focus on understanding

feasibility of using TLS transaction data for inference.

3 METHODOLOGY
We formulate the QoE estimation problem as a supervised machine

learning problem. This is similar in spirit to existing work designed

for packet data [11, 24]. We develop features specific to the coarse-

granular TLS transaction data based on the semantics of HAS. We

4
The HTTP transactions are derived from packet traces [17].

assume that the TLS transactions corresponding to video traffic

have already been identified (e.g., using SNI field) and grouped

into sessions. Later, we also present a heuristic to delimit TLS

transactions corresponding to consecutive sessions from the same

service. Here, we describe the three kinds of features constructed

from the sequence of TLS transactions of a session below:

Session-level: These features consist of metrics calculated for the

entire session. We calculate the session data rate, which is the total

data divided by the session duration, in both downlink (𝑆𝐷𝑅_𝐷𝐿)

and uplink (𝑆𝐷𝑅_𝑈𝐿) directions. In addition, we also log the ses-

sion duration (𝑆𝐸𝑆_𝐷𝑈𝑅) and the number of TLS transactions per

second (𝑇𝑅𝐴𝑁𝑆_𝑃𝐸𝑅_𝑆𝐸𝐶).

Transaction-level statistics: For a transaction, we already have

its downlink size (𝐷𝐿_𝑆𝐼𝑍𝐸), uplink size (𝑈𝐿_𝑆𝐼𝑍𝐸), and duration

(𝐷𝑈𝑅). In addition, we calculate the following three metrics for

every transaction: i) Transaction Data Rate (𝑇𝐷𝑅), which is obtained
by dividing the downlink data size by the transaction duration. Note

that𝑇𝐷𝑅 is not the same as network throughput as there can be idle

intervals in a TLS transactionwith no network activity [5]. However,

it is still an indicator of network quality as, intuitively,𝑇𝐷𝑅 is high

if the available bandwidth was high. ii) Downlink-To-Uplink (𝐷2𝑈 )

ratio, which is the ratio of the downlink data to the uplink data.

In HAS, the uplink data is typically an indicator of the number

of video segments requested [31]. Hence, 𝐷2𝑈 𝑟𝑎𝑡𝑖𝑜 represents

the amount of data downloaded per segment. This can be a useful

indicator of the video quality, and iii) Inter-arrival time (𝐼𝐴𝑇 ) of the
transactions to capture patterns in arrival of transactions.

Thus, we have 6 metrics for each transaction. From these metrics,

we generate summary statistics, namely, minimum, median, and

maximum value leading to 18 features in total
5
.

Temporal Features: These features capture the temporal progress

of data transfer during a session. We divide the session into pre-

determined intervals each starting from the beginning of the session

and calculate the cumulative downlink (𝐶𝑈𝑀_𝐷𝐿_𝑋𝑋𝑠) and uplink

data (𝐶𝑈𝑀_𝑈𝐿_𝑋𝑋𝑠) in each of these intervals. For transactions

that only partially overlap with an interval, we get its share of down-

link and uplink data based on the extent of the overlap with the

interval
6
. This set of features can be useful in uncovering any tem-

poral variations which may have been masked out in the aggregate

transaction statistics.

We consider the following end-points for the intervals (in sec-

onds): {30, 60, 120, 240, 480, 720, 960, 1200}. We use a maximum

value of 1200 seconds as this is the maximum session duration in

our dataset (see Section 4). The rationale behind using fine-granular

intervals in the beginning is that a session is more likely to be im-

pacted by poor network quality in the beginning because of empty

video buffer. We explored other intervals (omitted due to lack of

space) but found the above to yield the highest accuracy. Regardless,

we consider these intervals as one of the hyperparameters of our

model and an ISP can determine the intervals based on the data

observed on their network for a service.

Thus, we use a total of 38 (4 + 18 + 16) features for each session

(summarized in Table 3) to estimate its QoE metrics.

5
We considered other statistics such as standard deviation and mean, but found them

to be highly correlated to one of the existing statistics.

6
This is an approximation as it is not possible to determine the data transmission

pattern within a transaction
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Type Statistic Features

Session level single value

SDR_DL, SDR_UL,

SES_DUR, TRANS_PER_SEC

Transaction

Statistics

MIN, MED

(median), MAX

DL_SIZE, UL_SIZE, DUR,

TDR, D2U, IAT

Temporal

Statistics

interval based

CUM_DL_XXs,

CUM_UL_XXs

Table 1: Summary of features
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Figure 3: Bandwidth traces statistics

4 EVALUATION
We evaluate the QoE estimation accuracy using TLS transaction

data and compare it with packet traces.We first describe themethod-

ology used to collect the dataset for evaluation.

4.1 Data collection
We use a browser-based automation framework to collect data

for training and testing. The framework streams video sessions

under emulated network conditions and collects network data in

the form of packet traces and TLS transactions.We emulate network

conditions using publicly available bandwidth traces representing

a diversity of network environments including fixed broadband, 3G

and LTE [2, 27, 32]. Each session is streamed for a duration ranging

from 10-1200 seconds. Figure 3a and 3b show the distribution of

average bandwidth and duration of the traces, respectively.

Using the above methodology, we collect data for three popu-

lar streaming services which are denoted as Svc1, Svc2, and Svc3

(anonymized for confidentiality). We curate a list of 50-75 videos

for each service including content from different genres such as

animation, sports, and news, if available. The ground truth video

QoE metrics are collected per second by injecting Javascript func-

tions utilizing the HTML5 Video API to monitor re-buffering and

service-specific functions (determined manually) to monitor video

quality [8, 22]. The video quality levels are classified into one of

the three categories. We use resolution-based thresholds in Svc1

and Svc2 as these services had a unique resolution per quality level.

For Svc2, we classify video resolution of 360p or lower as low, 480p
as medium, and 720p or higher as high. The thresholds for Svc1
were 288p for low, 480p for medium, and remaining were tagged as

high. For Svc3, we observed only three quality levels in our dataset

and classify them into low, medium, and high. In practice, these

thresholds can be set by the ISP based on its target quality. We

use the per-second QoE information to obtain categorical values of

per-session video quality, re-buffering ratio, and combined QoE.

Overall we had 2, 111 sessions for Svc1, 2, 216 for Svc2, and

1, 440 for Svc3. We observe difference in ground truth QoE metrics

across services (see Figure 4) for sessions streamed under similar

network conditions. This can be attributed to differences in the

service design. We found that Svc1 uses a larger video buffer (240s)

as compared to the other two services. Furthermore, Svc1 player

attempts to avoid re-buffering by quickly filling the buffer at the

expense of streaming at low video quality. However, the other two

services, especially Svc2, switch video quality only when the video

buffer runs low. Therefore, poor network conditions generally led

to low video quality in Svc1, whereas in Svc2 and Svc3 (although

to a lesser extent), it led to re-buffering.

4.2 Results
We use the Python Scikit library to train different machine learning

models and use 5-fold cross validation for evaluating accuracy. We

tested different ML-based models, namely SVM, k-NN, XGBoost,

Random Forest, and Multilayer Perceptron. Here, we present results

using Random Forest (others omitted due to lack of space) as it

yielded the highest accuracy.

Accuracy for different QoE metrics: Figure 5 shows the classifi-
cation accuracy of different QoE metrics in Svc1 and Svc2. While

we report overall accuracy, and precision and recall values for low
QoE metric class, we particularly focus on the recall value as one

of our main goals is to correctly identify network locations with

video performance issues. Thus, it is important to identify the true

positives (low QoE sessions) with a high accuracy. ISPs can collect

additional data, such as fine-grained network traces or readily avail-

able radio metrics (for cellular networks) in the location, for further

fault diagnosis and management. For Svc1, the recall in identifying

low video quality sessions is 68%, while the recall is only 21% in

identifying high re-buffering (see Figure 5a). The trend is reversed

for Svc2 with 71% recall for high re-buffering and only 40% recall

for low video quality (see Figure 5b). The results are similar for

Svc3 with 63% recall for high re-buffering and 58% for low video

quality. In general, we observe that the accuracy metrics are high

for the QoE metric that is more likely to degrade with poor network

conditions in a video service. The accuracy metrics are high for the

combined QoE metric across all three services with 73%-85% recall

in identifying low combined QoE.

Table 2 shows the confusion matrix for the combined QoE metric

in Svc1. Most of the mis-classifications happen between neighbor-

ing classes (e.g., low classified as med). This is most likely due to

the model’s inability in classifying instances that are closer to the

class thresholds. Naturally, the error is higher for sessions with

medium QoE, while the sessions with low or high combined QoE

can be classified with a high accuracy across all three services.

Takeaway: The coarse-grained TLS transaction data can enable

ISPs to detect video performance issues aka low combined QoE

sessions with a high accuracy. In the remaining paper, we focus on

results pertaining to combined QoE.

Feature importance: We next evaluate the impact of different

kinds of feature on model accuracy. Table 3 shows the accuracy as

features are incrementally added to the model. The recall (accuracy)

is lowest when only session-level features are used and it improves

by 6%-12% (6%-11%) as features capturing the transaction statistics

and temporal distribution of data are added to the model. This

shows that despite being coarse-granular, TLS transactions within

a session can provide useful information about the QoE of a session.

Figure 6 shows the 10 most important features as reported by the

Random Forest model across the three services. There are 4 features

that appear in the top 10 list of all three services. These features
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Figure 4: Distribution of QoE metrics across services

Actual #
sessions

Predicted
low med high

low 632 72% 21% 8%

med 599 25% 43% 32%

high 880 5% 12% 84%

Table 2: Confusion matrix: Svc1, Com-
bined QoE

Feature set Svc1 Svc2 Svc3
A R P A R P A R P

Only Session-level (SL) 58% 61% 60% 66% 68% 63% 66% 77% 66%

SL + Transaction Stats (TS) 65% 72% 67% 69% 77% 68% 71% 84% 74%

SL + TS + Temporal Stats 69% 73% 71% 71% 78% 71% 73% 85% 75%

Table 3: Accuracy (A), Recall (R), and Precision (P) values for different feature sets
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Figure 5: Accuracy for different QoE metrics
are downlink session data rate (𝑆𝐷𝑅_𝐷𝐿), median transaction data

rate (𝑇𝐷𝑅_𝑀𝐸𝐷), median D2U ratio (𝐷2𝑈 _𝑀𝐸𝐷), and the cumula-

tive downlink data in the first minute (𝐶𝑈𝑀_𝐷𝐿_60𝑠). 𝑇𝐷𝑅_𝑀𝐸𝐷

and 𝑆𝐷𝑅_𝐷𝐿 represent the downlink data rate and hence capture

information about the available bandwidth. 𝐷2𝑈 _𝑀𝐸𝐷 represents

the downlink to uplink data ratio and is likely to be higher when

the video quality is high and vice-versa. Finally,𝐶𝑈𝑀_𝐷𝐿_60𝑠 rep-

resents the data downloaded in the beginning of the session when

the video buffer is usually low and when a session is more likely to

suffer if the network conditions are poor. We also observe differ-

ences across services with 8 features that appear in only one out

of the three services. This is likely due to the differences in service

design and TLS transaction mechanisms across services.

We also empirically illustrate the usefulness of transaction-level

statistics and temporal features by considering sessions that had

similar session-level features. Figure 7a presents a box plot of

𝐶𝑈𝑀_𝐷𝐿_60𝑠 for Svc1 sessions with duration between 2 and 3

minutes and downlink session data rate between 1400 kbps and

1600 kbps. The number of instances are displayed at the top of each

box. There is a clear difference in the distribution across low and

high QoE sessions. The 25th (50th) percentile of 𝐶𝑈𝑀_𝐷𝐿_60𝑠 for

low QoE sessions is 17 MB (21 MB), while it is 23 MB (24 MB) for

high QoE sessions. We found similar differences for 𝐷2𝑈 _𝑚𝑒𝑑 for

Svc2 sessions as shown in Figure 7b. We also find that the distribu-

tion of medium QoE sessions overlaps with the other QoE classes,

thus, indicating it is challenging to classify these sessions.

Takeaway: The analysis shows that in addition to session-level

metrics such as duration and downlink data rate, there are also

patterns within the TLS transactions of a session that differ based

on the session QoE. AnML-based approach can learn these patterns

to identify low QoE sessions.

Comparison with packet traces: We now compare the QoE esti-

mation accuracy from TLS transaction data against packet traces.

Multiple ML-based have been proposed in the related work to esti-

mate QoE using packet traces [8, 14, 17]. Most of them are designed

for real-time QoE inference and estimate metrics for every time

window T. A comparison with these approaches would require

estimation of per-session metrics from fine-granular estimation.

For simplicity, we consider an algorithm that directly estimates

per-session metrics. More specifically, we implement an algorithm

proposed by Dimopoulos et al. called ML16 [12]. The algorithm

uses features corresponding to video segments along with network

metrics such as packet retransmissions, loss, and RTT. Furthermore,

we use the feature set ML16 used for estimating video quality for

combined QoE metric as it is a superset of the features used to

estimate re-buffering.

Table 4 shows the accuracy metrics with respective gains in

comparison to TLS transaction data. Using packet traces with ML16

results in an improvement of 5%-7% in overall accuracy and 4%-9%

in recall for low combined QoE. This is intuitive as packet traces

are highly fine-granular. Moreover, they can be used to derive infor-

mation about video segments downloaded in a session which are

fundamental to HAS and its QoE. We then compare the associated

memory and computation overhead. In our dataset, the average

number of packets per session in Svc1 are 27, 689 as compared to

only 19.5 TLS transactions. The total computation time to extract

relevant features from all Svc1 sessions using packet data is around

503 seconds as compared to only 8.3 seconds using TLS transaction

data, a difference of factor of 60.

Takeaway: Packet traces provide higher accuracy than the TLS

transaction data but with a significant computation and mem-

ory overhead. Therefore, ISPs can implement adaptive monitoring,

wherein fine-granular network data is collected only for locations

where performance issues are detected.

Session identification heuristic: Recall that session identifica-

tion using TLS data can be a challenge for back-to-back sessions

due to overlapping transactions. We develop a simple heuristic for

session detection that is based on the following two insights: i)
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Figure 6: Top 10 important features across three services
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Figure 7: Distribution of sample transaction-level statistics and tem-
poral features for a subset of sessions with similar session-level fea-
tures (number of instances displayed at the top of each box)

Service Accuracy Recall Precision
Svc1 74% (+5%) 82% (+9%) 73% (+2%)

Svc2 78% (+7%) 85% (+7%) 76% (+5%)

Svc3 78% (+5%) 89% (+4%) 78% (+3%)

Table 4: Accuracy using packet traces and ML16. Parenthesis values
report the gain compared to TLS transaction data.

Actual # Trans-
actions

Predicted
Existing New

Existing 13269 98% 2%

New 1545 11% 89%

Table 5: Transaction identification accuracy

The beginning of a session is characterized by more than one TLS

transaction, and ii) The set of servers serving content are likely to

change when a new session begins. Thus, for each transaction we

consider the set of succeeding transactions starting within𝑊 sec-

onds. Using these set of transactions, we calculate 𝑁 , the number of

transactions in the set, and 𝛿 , the percentage of transactions with a

different server than the set of servers seen for the current session.

A transaction is considered to start a new session, if 𝑁 and 𝛿 are

greater than 𝑁𝑚𝑖𝑛 and 𝛿𝑚𝑖𝑛 , respectively. We use the following

parameter values,𝑊 = 3 seconds, 𝑁𝑚𝑖𝑛 = 2, and 𝛿𝑚𝑖𝑛 = 0.5.

Table 5 shows the confusionmatrix for Svc1 sessionswith session

beginnings correctly identified for 89% of the sessions. A timeout-

based heuristic would have considered all of them as a single session

as all these sessions were streamed back-to-back. We note that this

is an extreme case compared to real-world scenario.

Takeaway: Session identification techniques need to be designed

for the specific network data. The transaction arrival and server

request pattern can enable accurate session identification for TLS

transaction data.

4.3 Limitations
• Streaming application design: In addition to using volumetric

features at a session-level, we rely on the patterns of data trans-

fer across TLS transactions within a session for QoE inference.

Clearly, the extent of such patterns and consequently the ability

to infer QoE depends on the design of the streaming application.

This is also observed in variance of important features across

services in Figure 6. In an extreme case, an application may be

designed to stream the entire session over a single TLS connec-

tion, thus, rendering the transaction-level statistics and temporal

features used in our model ineffective.

• Impact of user interactions: Our experiments do not consider

the impact of user interactions on QoE inference. Different kinds

of user interactions, such as pausing and skipping, would mani-

fest in different ways in the TLS transaction data. Understanding

the impact of user interactions on inference accuracy is a part of

the future work.

• Real-time QoE inference: TLS transaction information is avail-

able from the proxy only after the underlying TLS connection

terminates. Therefore, our approach is not suitable for inferring

and managing user dissatisfaction in real-time.

5 CONCLUSION
We find that coarse-grained but readily-available TLS transaction

data can be used to estimate video QoE with reasonable accuracy

and low overhead. The predictive capability can be attributed to

two factors: i) downlink data-related features that capture network

quality, ii) differences in TLS transaction statistics for low and high
QoE sessions. Our future work will analyze the generalizability of

the models across different device platforms and service types (e.g.,

live content). We also plan to more deeply explore the accuracy vs.

scalability trade-off for other forms of network data such as more

granular flow-level data collected using NetFlow.
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