Video Through a Crystal Ball:
Effect of Bandwidth Prediction Quality on Adaptive
Streaming in Mobile Environments

Tarun Mangla*, Nawanol Theera-Ampornpunt’, Mostafa Ammar-, Ellen Zegura*, Saurabh Bagchit

*Georgia Institute of Technology

{tmangla3, ammar, ewz}@cc.gatech.edu

ABSTRACT

Mobile environments are characterized by rapidly fluctuating band-
width and intermittent connectivity. Existing video streaming algo-
rithms can perform poorly in such network conditions because of
their reactive adaptation approach. Recent efforts suggest that bi-
trate adaptation using proactive accurate bandwidth prediction can
help improve the quality of experience (QoE) of video streaming.
However, highly accurate long-term predictions may be needed in
mobile environments and those can be difficult to obtain. In this
work, we examine the impact of bandwidth prediction quality on
the QoE. We first characterize bandwidth profiles where bandwidth
prediction-based adaptation can be useful. We then study the im-
pact of prediction horizon and errors on the performance of Adap-
tive Bitrate (ABR) streaming. We observe that performance im-
proves as the prediction horizon increases at first and then benefits
start to diminish. We demonstrate that with proper error mitigation
heuristic, even erroneous predictions can be useful in some scenar-
ios. Finally, we study the role of video system parameters, namely
buffer size and bitrate granularity on bandwidth prediction-based
adaptation.

CCS Concepts

eInformation systems — Multimedia streaming; eNetworks —
Network performance analysis; Mobile networks;

Keywords
Video streaming; ABR; QoE; Mobility; Bandwidth Prediction

1. INTRODUCTION

Video streaming makes up a major portion of Internet traffic [1].
Clients stream video on a diverse set of devices and under a vari-
ety of network conditions. To support this diversity, most content
providers such as Youtube, Hulu, Netflix use HTTP-based Adaptive
bitrate (ABR) streaming. ABR streaming allows clients to have un-
interrupted streaming by adapting the video quality to the changes
in network bandwidth. The adaptation is made possible by divid-
ing the video into chunks of constant length and then encoding each
chunk into multiple bitrates at the server. Bitrate adaptation logic
built into the client video player decides the quality of chunks to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MOVID’16, May 13 2016, Klagenfurt, Austria

© 2016 ACM. ISBN 978-1-4503-4357-2/16/05. .. $15.00

DOIL: http://dx.doi.org/10.1145/2910018.2910653

fPurdue University
{ntheeraa, sbagchi}@purdue.edu

request from the server based on its estimate of the future band-
width and/or playout buffer occupancy. Such adaptation logic aims
to optimize (sometimes conflicting) Quality of Experience (QoE)
metrics, namely average bitrate, rebuffering and bitrate switches.

Many bitrate adaptation algorithms have been proposed that adapt
either based on past TCP-throughput (e.g., [5, 6]), or current buffer
occupancy (e.g., [4]). These adaptation algorithms use informa-
tion from the past or present to estimate the future bandwidth. This
makes their approach reactive in the sense that they have to experi-
ence the fluctuation in the bandwidth in order to estimate it and then
adapt to it. This kind of reactive adaptation can fail when the net-
work conditions are fluctuating rapidly and the past is not a good
indicator of future. Mobile clients connected to WiFi or cellular
network are specifically characterized by such rapid fluctuations in
the network bandwidth. For example, Figure 1a shows the band-
width measured by a mobile client connected to the Georgia Tech
campus WiFi while riding on a campus bus. The bandwidth trace
is characterized by intermittent connectivity and, low and rapidly
fluctuating bandwidth. To contrast, Figure 1b shows the bandwidth
trace of a stationary client connected to the home WiFi of one of
the authors. The trace has high average bandwidth, no disconnec-
tion and low bandwidth fluctuation. While a reactive adaptation
approach can work well for stationary clients, the same approach,
as will be shown in experiments later, can lead to high number of
bitrate changes and excessive rebuffering in mobile environments.

A recent study suggests that accurate bandwidth prediction can
be useful to improve the performance of ABR streaming [16]. The
study shows the gains in QoE achieved by using accurate, short
time-horizon, bandwidth predictions for cellular networks. By im-
plication, this study also argues that accurate, longer time-horizon
bandwidth prediction will also be even more useful — especially
for mobile clients that can experience high bandwidth fluctuation.
However, long time-horizon predictions can be difficult to obtain
with high accuracy and will be subject to errors. Motivated by
this fact, in this paper, we ask the following question: "How does
bandwidth prediction quality, namely accuracy and horizon, im-
pact the performance of prediction-aware ABR streaming". Build-
ing an accurate bandwidth prediction system has an associated cost
and hence we also ask "Under what bandwidth profiles is it most
useful to predict bandwidth?" Finally, we study the role of video
system parameters, specifically, bitrate granularity and buffer size
on prediction-aware adaptation.

Our work here is not based on any specific bandwidth prediction
technique. Rather we are interested in understanding the tradeoffs
between prediction quality and ABR performance improvement so
as to inform the design of bandwidth prediction techniques aimed
at ABR video streaming. Prior work has suggested ways for band-
width estimation. A cross-layer approach that utilizes information

in the PHY layer can be used for bandwidth estimation in cellu-
lar networks [7]. Location-based network quality prediction for
wireless-LANSs has been suggested in [10]. The work in [13] uses
real-time cellular data at the base station to predict the quality of
the network in the future. Scheduling at the base station based on
mobility [9] and shaping video traffic at the the network layer [3, 8]
are also approaches that can be indirectly used to predict the future
network bandwidth.

In this paper, we first design a bandwidth prediction-aware adap-
tation algorithm which we dub CrystalBall. We also design an er-
ror mitigation heuristic that alleviates the QoE degradation due to
errors in the prediction. We decided not to use existing prediction-
based adaptation algorithms in [16, 15], because the former only
uses an average future bandwidth and does not explicitly consider
the variations in bandwidth prediction, and the latter requires sig-
nificant offline optimization which increases as the prediction hori-
zon and number of bitrate levels increase. Prediction-based adap-
tation using physical layer information [14] or location [12] in cel-
lular networks has been also proposed, but these adaptation algo-
rithms have been designed for the specific nature of the prediction
and do not work with generic prediction schemes.

The rest of this paper is organized as follows: Section 2 describes
the context in which prediction-aware algorithm operates and dis-
cusses a generic model for bandwidth prediction quality. Section 3
describes the CrystalBall algorithm including an enhancement to
mitigate the effect of errors in the prediction. Section 4 describes
results from a set of experiments aimed at understanding the in-
teraction among prediction quality, video system parameters and
ABR performance metrics. Section 5 summarizes our effort and
conclusions.

4500 3

= 4000 =
83500 825
3000 =20
£ 2500 P
S 2000 513
Z 1500 210
B8 bl | E

AN s o

100 200 300 400 500 600 0 100 200 300 400 500
time (s) time (s)

(a) Bandwidth of client on a bus con-(b) Bandwidth of static client connected

nected to campus WiFi to home WiFi

Figure 1: comparison of throughput for static and mobile clients

2. SYSTEM CONTEXT

System Architecture: We suggest an architecture similar to one
in Figure 2 where a bandwidth prediction system is feeding the
bandwidth estimates to the adaptation algorithm. The bandwidth
prediction system can be co-located with client, server or network.

HTTP GET
. _—
Video Player el Video
—
Adaptation € Server
Algorithm Response
Bandwidth
Prediction System

Figure 2: Prediction-based adaptation system

Prediction Model: We assume that the prediction system pro-
vides bandwidth estimates at time ¢, as the vector, {A[z] }, where
i€ {teur, teur + 1, ooy teur +n(W —1)} . Here, tcor is the current

time and W is the prediction window. Each prediction value, A[z],
is an average for a period of n seconds, with the vector predicting
bandwidth for the next nWW seconds.

We quantify the prediction error £[¢] for sample ¢ in the predic-
tion vector as the difference between the actual value and the es-
timated value. Specifically, £[i] = A[i] — A[i] where A[7] is the
actual average bandwidth over the corresponding interval.

Video Model: We assume video V constituted of M chunks,
each of length L seconds. Bj,q. denotes the maximum buffer size
and b.,r denotes the current buffer occupancy. Let R be the set
of available bitrates with j bitrate in the set represented by R;.
Also, i, denotes the bitrate at which chunk k£ was streamed.

QoE Metrics: We use the following quality metrics to access the
performance of streaming: average bitrate, rebuffering ratio and bi-
trate switches. Average bitrate, measured in kbps, is the time aver-
age of chunk bitrates during the entire playback session. Rebuffer-
ing ratio is the proportion of time video buffered out of the total
time. Bitrate switches is the number of times the bitrate changed
between two consecutive chunks. A high QoE is characterized by
high average bitrate, low rebuffering ratio and low bitrate switches.

3. THE CRYSTALBALL ALGORITHM

3.1 Overview
Here we describe the intuition behind the CrystalBall algorithm

which takes into account bandwidth prediction, the current buffer
occupancy, the set of available bitrates and the number of chunks
to be downloaded as input. It produces the bitrate the player should
request future chunk downloads. The algorithm is run each time
the bandwidth predictions are refreshed.

The algorithm solves the bitrate adaptation problem by consid-
ering the following factors:

e Rebuffering: Prior studies have shown that users are most sen-
sitive to rebuffering in the video [2]. We avoid rebuffering by
downloading every chunk before its playback time. As long as
the average bandwidth available is not lower than the lowest bi-
trate, (and the bandwidth prediction is accurate), it is always pos-
sible to avoid rebuffering.

e Bitrate: The algorithm aims to maximize the minimum (max-
min) bitrate across all chunks. We did not consider maximizing
the average bitrate as it can lead to logically worse QoE. For
example, a bitrate schedule decision of (in kbps) {1000, 1000,
1000} is better than {2000, 1000, 500}, though the latter has
higher average bitrate.

We also would like the number of bitrate switches to be low, as
they can be annoying to the user. Although this factor is not explic-
itly considered in the base algorithm, maximizing the minimum bi-
trate has the desirable side effect of producing solutions with lower
number of bitrate switches. This number could be further lowered
by the use of stability heuristics, which are designed to mitigate
errors in bandwidth forecasts.

To solve for max-min bitrate, an optimization problem can be
formulated with the same constraints as described in [16] and our
max-min objective function. However, solving this optimization
for every chunk download may not be feasible for a mobile client.
A simple greedy approach for the max-min problem then could
be to download the next N chunks at the largest bitrate less than
the average bandwidth in the prediction window. This greedy ap-
proach, however, can lead to excessive rebuffering as it does not
consider the variations in network bandwidth. In the next subsec-
tion, we describe in detail the CrystalBall algorithm that is designed
to account for the variations in network bandwidth and gives an ex-
act solution to the max-min problem when there is no limit on the
buffer and a sub-optimal solution otherwise.

3.2 The Base Algorithm — Ciear CrystalBall (CCB)

We first describe a base algorithm, (shown in Algorithm 1) that
assumes accurate bandwidth predictions. A heuristic to mitigate
errors in prediction is described in the next subsection.

CCB first initializes a list 1[1) with N slots, one slot corre-
sponding to each chunk. Each slot is characterized by (nc, bw);,
where nc refers to the number of chunks that will be downloaded
in that slot and bw refers to the average bandwidth available for
these nc chunks. GetChunkBW does this initialization by setting
nc as 1 for every slot. For the first chunk, bw is set to be the total
bandwidth between .., and its playback time tcyr+bcyr, Where
beur 1s the current playout buffer occupancy (measured in seconds
of video). This is because we can afford a delay of b.., seconds
while downloading the first chunk. For chunk ¢ with playback time
within the next W seconds, bw is the total bandwidth between the
playback time of chunk ¢ — 1 and . For the remaining slots, bw is
set to be equal to zero. These are the chunks that do not have their
playback deadline in the next W seconds, but we need to download
them to maintain download rate equal or more than the playback
rate. After initializing 1, the algorithm iterates over this list and
compares consecutive bw values. The algorithm utilizes the fact
that bandwidth at time t can potentially be used for any chunk with
playback time greater than t'. So, if the bandwidth in the current
slot is greater than the next slot, then the two slots can be merged.
GetNewAverage function merges the two slots into a single slot, by
replacing bw with the weighted average of bw; and bw;+1 and nc
by the sum of nc values in the two slots. The algorithm terminates
when there are no more merges possible i.e. ¥[i][bw] < ¢[j][bw]
Vi < j. Then AssignBitrate greedily selects the highest bitrate just
less than bw corresponding to each chunk and returns a bitrate list
711,~) Which is then used by the player to download the next chunk.

Algorithm 1: Base CrystalBall Algorithm

Input : Ap i w), beurs R, N
Output: T(1,N]
Yr,n) = GetChunkBW (A, 1wy, N, bewr);
modified = true;
o=1I
while modified do
modified = false;
¢.append([0]);
Jj=0;
fori=1;i<len(y); 1 + + do

if y[i][bw] > ¢[j][bw] then

‘ @[7] = GetNewAverage(¢[7], ¥[¢]);
modified = true;

else
L ¢.append(¢)[i]);
j++s
=
o=1L

7r(1,~n] = AssignBitrate(y),R);
return 71, nj

3.3 Error Mitigation Heuristic — Foggy CrystalBall
(FCB)

Prediction errors can be of two types: overestimation error or un-

derestimation error. Constant overestimation can lead to the wrong

'In case of limited buffer, the bandwidth at t can be used only for
chunk with playback time, ¢, € (t,t+Bmaz)

bitrate switch-up decisions and rebuffering. Similarly, constant un-
derestimation can lead to wrong switch-down decisions and under-
utilization of network bandwidth. To mitigate the errors we intro-
duce a heuristic which gets called whenever there is a decision to
switch the bitrate. The idea behind the heuristic is that a switch
could happen because of errors in the prediction and under some
conditions we can afford or choose not to switch.

A switch-up decision could be because of over-estimation and
the heuristic is to check that the average bandwidth over the pre-
diction window is sufficiently greater than the bitrate (Ry) video
player will switch to. The bitrate is, therefore, switched up only if
the following condition is satisfied:

avg(Ap,wy) = (14)Ry, (1)

« is a function of the overestimation error and its value increases
as the overestimation error increases.

Similarly, a switch down decision can be because of underesti-
mation, and we could stay at the same bitrate if the current buffer
is greater than a threshold. The bitrate is switched down only if the
following condition is satisfied:

bcur S ﬁ * B'mam (2)

[is a function of the underestimation error and decreases when the
underestimation error increases.

Both « and S can be dynamically adjusted by the prediction sys-
tem based on the global error or by the client video player based on
the past errors in the prediction.

4. EVALUATION

Our evaluation is driven by these questions:
e When are predictions useful?
e What is the effect of prediction quality on performance?
e Do video system parameters play any role in prediction-based
adaptation?
Before answering these questions, we first describe our experimen-
tal methodology.

4.1 Evaluation Strategy

Video parameters and metrics: We assume 10 minute (M =
150) long video sessions in our experiments. The size of video
chunk is 4s and maximum buffer size is 32s. We use the following
six bitrate levels (in kbps): {150, 350, 600, 1000, 2000, 3000}. To
quantify the performance of the adaptation algorithms, we use three
video QoE metrics as defined in Section 2 namely, average bitrate,
rebuffering ratio and total bitrate switches.

Adaptation algorithms: We implemented a simulator in python
for the adaptive video player. We implement three other adapta-
tion algorithms along with our Crystball algorithms. The first is a
rate-based adaptive (RBA) player that decides the next chunk bi-
trate based on the harmonic mean of past 5 chunk download rates.
The second player is a buffer-based adaptive (BBA) player where
the next bitrate is a function of current buffer occupancy [4]. The
third is the prediction-based adaptation player as suggested in [16],
referred to as PBA.

Dataset: We use two sets of bandwidth traces: The first is a
synthetic dataset designed to give us qualitative insight into how
bandwidth profiles influence the effectiveness of prediction-based
adaptation. The second set contains bandwidth traces (40 traces) re-
ported every 3s, collected by us when riding the campus bus while
being connected to the campus wifi. Each trace in the second set is
15 min long. The trace in Figure 1a is from this second dataset.

—t
Amax__
A D=P/L
Arnin P
T

Figure 3: A rectangular waveform bandwidth trace

4.2 When are predictions useful?

Here we qualitatively identify bandwidth profiles that can bene-
fit from prediction-based adaptation. In order to simplify our anal-
ysis we focus on a synthetic bandwidth profile that allows us to
change some basic properties of bandwidth fluctuations using some
parameters. To that end we use a rectangular waveform, shown
in Figure 3 as a representative of fluctuating bandwidth profile.
Apaz and A, represent the maximum and minimum values of
the bandwidth respectively and A denotes their difference. L refers
to the period of the waveform and D is the proportion of time when
bandwidth is A,,q.. We observe the response of the adaptation al-
gorithms to the bandwidth traces generated by varying different pa-
rameters of this waveform. Unless specified otherwise, we use the
following values: A.in =0 kbps, Amae = 3000 kbps, L =30s and
D =0.5. We assume a prediction window of 60s with prediction
granularity of 1s.

Amplitude of fluctuations: In this experiment we vary A while
keeping the sum of A, and Apqs to be constant and equal to
3000kbps. Figure 5 shows the performance as the amplitude of
the fluctuations increases. The rate-based adaptation algorithm per-
forms poorly as the value of A increases. For buffer-based adapta-
tion the average bitrate is high with no rebuffering. However, we
see a large number of switches (15-50), especially when the band-
width is constant. This is due to convergence issues with buffer-
based adaptation algorithm. Due to discrete set of bitrates, the
buffer keeps oscillating between two values and hence the bitrate
also keeps switching. The high number of bitrate switches can
adversely effect the QoE. CCB is able to adjust to the increasing
amplitude of fluctuation.

Duration of low connectivity: Mobile environments often have
periods of no or very low connectivty. Here we study the effect
of duration of low connectivity. We vary the value of D and as
shown in Figure 6, BBA again has a high number of bitrate switches
and the rate-based adaptation algorithm encounters rebuffering for
longer periods of disconnection. However, CCB avoids rebuffering
by prefetching the chunks while keeping bitrate switching very low.

Frequency of fluctuations: Here we vary the time period of
fluctuation, keeping D = 0.5, Ap,in = 500kbps, Amaez = 2500kbps.
As evident from Figure 4, very high frequency (low time period)
fluctuations get averaged out and even reactive adaptation works
well. However, fluctuations which have a time period greater than
the chunk size lead to degradation in the QoE for rate-based adap-
tation. This is because, rate-based adaptation have inherent latency
in adapting to the fluctuation due to its reactive nature. CCB is
able to plan the bitrates taking into account the fluctuation and thus
performs well across all QoE metrics.

The above experiments lead to the following insights about the
usefulness of bandwidth prediction:

e Predictions can be useful when there are high amplitude fluctu-
ations, as unnecessary bitrate changes can be avoided by proper
bitrate planning.

e Predictions can also be useful in case of intermittent connectiv-
ity, as rebuffering can now be avoided by prefetching the content.

e Very high frequency fluctuations can be handled well by reactive
ABR schemes that are not prediction-based as they get averaged
out. However, bandwidth fluctuations at time scale of chunk size
can only be handled by prediction-based adaptation.

Performance on real traces: Here we compare the performance
of adaptation algorithms with the campus-wifi traces. Figure 7
plots the CDF of the per-session values of QoE metrics under dif-
ferent adaptation algorithms. The results show similar trends to the
synthetic traces. RBA suffers from rebuffering in 50% of the traces
and BBA has high bitrate switches, more than 20 for 60% of the
traces. Even PBA suffers from rebuffering in 20% of the traces
because it does not consider the variations in the prediction and
adapts based on the average. The CCB adaptation algorithm per-
forms well as it completely avoids rebuffering, minimizes bitrate
switches while maintaining comparable average bitrate.

4.3 What is the effect of prediction quality on
performance?

Here we study the impact of prediction quality namely prediction
window and accuracy on the QoE of video streaming. The results
shown in this section are for campus-wifi dataset traces. Unless
specified otherwise, we assume a prediction window of 60s.

Prediction window: We first examine the impact of prediction
window on the QoE while assuming accurate bandwidth predic-
tions. Figure 8 plots the average of quality metrics across all traces
vs prediction window. It is clear that as the prediction window in-
creases, both rebuffering and bitrate changes decrease. The average
bitrate also goes down, but this is because the player avoids un-
necessary switch-ups due to temporary increase in the bandwidth.
The benefits of prediction diminish after the window becomes more
than 80s.

Errors: Until now we have been using accurate predictions, here
we add errors in bandwidth predictions. Ideally, the nature of errors
would depend on the bandwidth prediction system. In our experi-
ments we consider an error model with time-varying errors inspired
from the errors in weather prediction [11]. The model is based on
the intuition that errors in prediction are more for farther times into
the future. We first randomly assign whether the current prediction
is an overestimation (positive error) or underestimation (negative
error) by simulating a coin flip. Then we assign value to the errors,
&(t), such that they are distributed uniformly randomly between 0
and &maz (t). Here Emaz (t) grows linearly with time ¢ at a rate of
m per second, starting from c. Thus, the near future prediction val-
ues will more likely have lesser errors than values that are farther
in the future. The errors are recomputed by following this process
every time a new set of predictions are generated.

In this experiment, we examine the performance of the error mit-
igation heuristic. We set m as 10kbps and c as 25kbps. We plot the
results for four different scenarios, PBA without errors, PBA with
errors, CCB without errors and FCB (CCB with error mitigation
heuristic) with errors. In these experiments, we assume o = 0.4
and g = 0.6 for the error mitigation heuristic used in FCB. In a real
setting, either prediction system could recommend these values to
the client or the client could adapt these values based on past errors
in prediction. Figure 9 shows that performance of PBA degrades
with errors. FCB, despite inaccurate predictions, closely matches
the performance that CCB gets with accurate predictions. Thus, er-
roneous predictions can still be useful with appropriate heuristics.

Trade-off between prediction quality metrics: In this set of
experiments we show the trade-off between accuracy and longer
prediction window. We set the error growth rate (m) to 20kbps and
plot the QoE under FCB for three different prediction windows,
16s, 32s and 60s. Figure 10 shows that QoE metrics for W=32 are

o
o
=

o
o

©BBA 2 we%\ o BBA
-2003,-«-RBA 540t @ * RBAJ
©u. -4CCB = % Y -4-CCB
2 %301 =y oonel 1
$0.02+ 2 p o
2 ° fac PR N
30.01F x] B0l : |
o xS ° x x*
x"RT X =z AAAxA'-AgAAAAAAAAAAA“AAA“AAA
0 00060066000600006006066080000 o
o 20 40 60 0 20 40 60
L(s) L(s)
Figure 4: Performance as frequency of fluctuations changes
__1800 0.15 506 -
2 ©BBA -©BBA 3 -, -©BBA
£1600(|-* RBA 2 % RBA 5407 v, .4 -%-RBA|
= -A-CCB ; © ll-a-ccB = e N -A-CCB
) ; > 0-1 H Y
g 1400 ,‘xxxxxx £ CDSO* \9\ N
5 y 8 Sl ®-0
%1200"_‘_‘_“—;7‘—‘—“—&—&—&—“_4. 20.05’ E2O xxxxxx§'~s__5_i)
S 1000¥ 882y S0-0-0-0-e0-0o? O o PN S0} <]
:: xxx N = A O A AA A A A A A A A A A
800 0 P P Y S SR G S S S 0 B B - T - el
0 500 1000 1500 0 500 1000 1500 0 1000 1500
A (kbps) A (kbps) A (kbps)
Figure 5: Performance as the amplitude of fluctuations changes
3000 0.6 40
(23 -© BBA x -© BBA 5]
3 ¢ RBA PO 2 ., % RBA Saol
2 2000 A=CCB % So4 x -+CCB H
© e X ’,e’ < ©
5 e S 2 ... s 20¢
$,1000 = 202 X, s
s x” g @ 5101
] [vel x e, o
< N PP - v z,
0 02 04 06 08 1 0 0.2 0.4 0.6 0.8 1 0
D D
Figure 6: Performance as the duration of fluctuations changes
1 1 —
0.8 0.8f I,:‘ 1
w06 w06 o w06 o]
©o0.4 --BBA ©Co.4 --BBA ©Co.4t --BBA| 1
=== RBA .=« RBA - RBA
0.2 —PBA 0.2 —PBA 0.2 —PBA|
o —CCB 0 —CCB 0 —CcB
0 500 1000 1500 2000 2500 0 0.01 0.02 0.03 o 10 20 30 40
Average Bitrate (kbps) Rebuffering ratio No of bitrate switches
Figure 7: Performance for campus-wifi traces
. 4.4 Role of video system parameters
1600 T T T T 0.02 4110 .
-o- Average bitrate Now we compare the role of.V1d.eo syst.en} parameters, namgly
-a-No of bitrate switches 1o buffer size and bitrate granularity in prediction-aware adaptation
7 % Rebuffering ratio ” with rate-based adaptation. We run our experiments on campus-
Q
g 2 18 5 wifi traces with a 60s prediction window and note the average of
£ © = .
b o 2 QoE metrics across all traces.
= c
S14001 001 17 g Buffer size: Figure 11a shows the impact of varying the maxi-
o = = .
o é 5 mum buffer size on the QoE for RBA and CCB. For CCB, as the
g « 16 § maximum buffer size increases, the number of switches decreases
>
< - g and the average bitrate increases. This is because larger buffers can
. - ~ 15
‘\\1/' absorb more fluctuations in the bandwidth and thus avoid unneces-
1200 L K . . sary switch downs. Note that RBA is not able to fully utilize the
0 20 40 60 80 100 120

Prediction window (s)

Figure 8: Effect of Prediction Window on CCB

better than W=16 and W=60. This is intuitive, as larger prediction
window means more chances of errors in the prediction. A smaller
prediction window, although has lower errors, also has lesser infor-
mation about the future. Thus, there is a trade-off between these
two prediction quality metrics and any prediction system should
consider this trade-off while making a bandwidth prediction.

potential of increasing buffer size as it does not consider buffer oc-
cupancy during adaptation. Although the bitrate increases a little,
the number of bitrate switches and rebuffering (not shown here but
non zero) remain the same.

Bitrate Levels: Here we compare the effect of granularity of bi-
trate levels on RBA and CCB. We construct a set of equally spaced
bitrates between 300kbps and 3000kbps (both included) and vary
the number of bitrate levels. Figure 11b shows the rebuffering ratio
as the number of bitrate levels increases for RBA and CCB. In-
terestingly, rebuffering ratio increases for RBA as the number of

Rebuffering ratio

[
0.8 H
E 0.6
—CCB (w/o error) Qo4 —CCB (w/o error)|]
PBA (w/o error) PBA (w/o error)
FCB (w/ error) 0.2 FCB (w/ err)
----- PBA (w/ error) - PBA (w/ err)
0
0.03 0.04 0.05 0 10 20 30

No of bitrate switches

Figure 9: Performance of error mitigation heuristic

= 1

0.8}
W 0.6f
a r
Co.4r el 1
—-FCB (W = 16) d —-FCB (W = 16)
FCB (W = 32) 0.2 FCB (W = 32){
—FCB (W = 60) oL~ —FCB (W = 60)
0.06 0.08 0 10 20 30

0.04

Rebuffering ratio

No of bitrate switches

Figure 10: Trade-off between prediction accuracy and prediction horizon, W is the length of prediction window

e i
0.8 ’,_f'__'. 0.8
aed fazt
w 0.6 e w 0.6}
o £ i
Qo4 ‘:f —CCB (w/o error) Opuat
f PBA (w/o error)
0.2 x" FCB (w/ error) 0.2}
P PBA (w/ error) H
0 ot
0 500 1000 1500 2000 2500 0 0.01 0.02
Average Bitrate (kbps)
1 — —
-
0.8 _!.-"‘
w 0.6 ¢
©o0.4
—=-FCB (W = 16)
0.2 FCB (W = 32)
—FCB (W = 60)
0
0 1000 2000 3000 0.02
Average Bitrate (kbps)
20 SMO”, 004
LT —— o -0 y == Fe-RBA

4-CCB

-A-CCB switches
-&-RBA switches
- RBA bitrate
—£-CCB bitrate

+1300

I s S Y A

25 30 5 50 55 No of bitrate levels

35 40
Buffer size (s)

(a) Buffer size

Figure 11: Effect of video system parameters on QoE

bitrate levels increases. This is because now the bitrate selected by
rate-based adaptation will closely match the bandwidth and there
will be less video in the buffer at any time. During periods of dis-
connection, this can lead to rebuffering. Although not shown here,
the average bitrate and number of switches increase with increase
in bitrate granularity for both adaptation approaches.

S. CONCLUSION

In this paper we study the usefulness of bandwidth prediction
in improving the QoE of ABR video streaming in mobile environ-
ments. Our aim is to inform the design of prediction techniques
that specifically target ABR video streaming. Prediction quality is
characterized by the sometimes conflicting properties of accuracy
and time-horizon. In order to make full use of longer-time horizon
predictions and to help mitigate prediction errors, we design the
CrystalBall (CB) adaptation algorithm. We then conduct an evalu-
ation of the performance of CB and compare it with other related
algorithms in the literature. We observe that performance improves
as the prediction horizon increases at first and then benefits start to
diminish. We demonstrate that under some scenarios predictions
up to some error can be useful with proper error mitigation heuris-
tic. We also find that QoE is affected in unique ways when using
prediction-based algorithms. Our future research will use the in-
sights from this study to design bandwidth prediction techniques
for mobile users that are specifically tailored to video streaming.

Acknowledgements
This work is funded in part by NSF grant NETS 1409589.
References

[1] Cisco visual networking index: Global mobile data traf-
fic forecast update 2014-2019 white paper, feb 2015.

(b) Bitrate granularity

See:http://tinyurl.com/mokcut3.

A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica,
and H. Zhang. Developing a predictive model of quality of
experience for internet video. In SIGCOMM ’13.

J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan,
and M. Chiang. A scheduling framework for adaptive video
delivery over cellular networks. In MobiCom ’13.

T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and
M. Watson. A buffer-based approach to rate adaptation: Evi-
dence from a large video streaming service. ACM SIGCOMM
Computer Communication Review, 2015.

J. Jiang, V. Sekar, and H. Zhang. Improving fairness, effi-
ciency, and stability in HTTP-based adaptive video streaming
with FESTIVE. In CoNEXT ’12.

Z.Li, X.Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran.
Probe and adapt: Rate adaptation for http video streaming at
scale. I[EEE JSAC, 2014.

F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and
A. Terzis. CQIC: Revisiting cross-layer congestion control
for cellular networks. In HotMobile ’15.

A. Mansy, M. Fayed, and M. Ammar. Network-layer fairness
for adaptive video streams. In IFIP Networking, 2015.

R. Margolies, A. Sridharan, V. Aggarwal, R. Jana,
N. Shankaranarayanan, V. Vaishampayan, and G. Zussman.
Exploiting mobility in proportional fair cellular scheduling:
Measurements and algorithms. In INFOCOM, 2014.

A. J. Nicholson and B. D. Noble. Breadcrumbs: Forecasting
mobile connectivity. In MobiCom ’08.

D. Orrell, L. Smith, J. Barkmeijer, and T. N. Palmer. Model
error in weather forecasting. Nonlinear Processes in Geo-
physics, 2001.

H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and
P. Halvorsen. Video streaming using a location-based
bandwidth-lookup service for bitrate planning. ACM TOMM,
2012.

N. Theera-Ampornpunt, S. Bagchi, K. R. Joshi, and R. K.
Panta. Using big data for more dependability: A cellular net-
work tale. In HotDep ’13.

X. Xie, X. Zhang, S. Kumar, and L. E. Li. piStream: Phys-
ical layer informed adaptive video streaming over LTE. In
MobiCom ’15.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-
theoretic approach for dynamic adaptive video streaming over
HTTP. In SIGCOMM ’15.

X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic,
R. Jana, X. Jin, J. Rexford, and R. K. Sinha. Can accurate
predictions improve video streaming in cellular networks? In
HotMobile ’15.

(2]

(3]

[4

—

(5

—

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

