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Abstract—Cellular network performance does not cleanly gen-
eralize. A variety of factors, such as location, terrain, signal
quality and network load, affect the performance of services
delivered over LTE networks. As a result, the presence of LTE
coverage does not always equate to usable service; coverage can
be of poor quality, or it can be congested and difficult to access.
Given that reliance on LTE networks for Internet connectivity has
exploded, it is critical to understand the quality of experience for
applications delivered over these networks in a variety of scenar-
ios. To this end, we develop a robust measurement suite that we
use to conduct a unique measurement campaign in tribal, rural,
congested urban and uncongested urban regions, representing
a variety of under-provisioned, congested, and well-provisioned
operational LTE networks run by four major providers. Our
analysis confirms that the performance of LTE networks in tribal
and rural areas is typically worse than even heavily congested
urban networks. More specifically, in the regions that we study,
LTE networks in under-provisioned (tribal/rural) areas have
9x poorer video streaming quality, 10x higher video start-up
delay, undergo more than 10x the number of resolution switches,
and lead to more than 2x slower Web browsing experience as
compared to urban deployments. We show that throughput and
latency are 11x and 3x worse in tribal and rural locations,
despite identical LTE carrier subscription plans.

Keywords—LTE, QoE, QoS, Rural, Congestion, Video stream-
ing, Web browsing

I. INTRODUCTION

LTE plays an increasingly critical role in providing pervasive
Internet access. A 2019 Pew Research study reports that roughly
one in five U.S. adults is “smartphone dependent,” meaning
they solely rely on mobile broadband for Internet access at
home [1]. Individuals living in rural and tribal regions are
particularly likely to rely on mobile broadband for Internet
access [2]. As growing numbers of people depend on LTE
networks as their primary means for accessing healthcare,
financial, and educational services, it has become critical to
evaluate how well these networks service user applications.
Due to the COVID-19 pandemic, the urgency of evaluating
the quality of experience for applications delivered over
mobile broadband has skyrocketed as stay-at-home orders and
rapid movement to online schooling increase the demand for
applications that are known to be sensitive to network quality,
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such as video streaming and interactive video chat [3]. As
a result, communities without access to usable, high speed
broadband, such as many rural and tribal regions, are severely
disadvantaged [4].

There is a need for targeted measurement campaigns that
represent performance within challenged networks [5]; the
Federal Communications Commission recently encouraged
researchers to undertake campaigns to study and report the
state of rural networks [6]. Our goal is to understand mobile
quality of service (QoS) and quality of experience (QoE)
performance profiles for common, and increasingly essential,
applications such as video streaming and Web browsing, in
a variety of network conditions. To do so, we undertook an
extensive measurement campaign to collect 16 datasets of
network traces in the Southwestern U.S. for four major telecom
operators: AT&T, Sprint, T-Mobile and Verizon, gathering over
30 million LTE packets. To understand geographic performance
discrepancies, we collected measurements of LTE networks
in tribal, rural, and urban communities. While we anticipate
that network performance in tribal and rural areas will differ
from that in urban areas because rural and tribal networks are
often under-provisioned [5], [7], the objective of our study is
to quantify the severity of performance degradation in under-
provisioned networks. Service quality is not a binary label, just
like cellular coverage; for instance, application performance is
subject to network conditions. Our goal to quantify network
performance stems from the need to accurately indicate the
behavior of different applications, and not simply label a region
as “covered” or “not covered”.

Our tribal and rural measurements were conducted in New
Mexico. New Mexico is one of the least densely populated
states in the U.S. and 10% of its land area belongs to one
of the 23 sovereign tribes with territories in the state [8]. In
the rural regions, there is a high concentration of smartphone
dependent residents [9].

In addition to the tribal and rural contexts, we collect network
traces from crowded events in urban locations in California,
during which atypically high volumes of network utilization
cause congestion. For comparison, we also collect traces from
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the same urban locations during typical operating conditions
as a baseline. Our datasets have broad spatial and temporal
variability, but can be classified into three categories: under-
provisioned (rural and tribal), congested (congested urban), and
well-provisioned (baseline urban).

While Web browsing is a critical component of daily Internet
access, streaming video currently accounts for 65% of all
downstream mobile traffic worldwide [10] (for instance, in the
U.S., more than 80% of the population possess some form
of video streaming subscriptions [11]). Therefore, we focus
our analysis on understanding the QoE of Web browsing and
streaming video for these regions. At each location, we collect
extensive QoS and QoE measurements. Based on our analysis,
we illustrate critical performance differences between the three
location categories. Our key contributions and findings include:

¢ Collection of 16 network performance datasets from 12
locations across the Southwestern U.S., representative of
three network conditions: under-provisioned (rural and
tribal), congested urban and well-provisioned urban;

o Characterization of LTE traffic across all locations and
network conditions in the datasets, through analysis of
four QoS and six QoE metrics;

« Analysis of QoS and QoE data, which reveals that rural
and tribal LTE networks consistently perform worse than
the studied urban baseline deployments, and typically
comparable or worse than congested urban networks.

II. EVALUATION METRICS

Typically, a binary representation of cellular coverage (i.e.,
is an area covered or not) is used to characterize the state of
Internet connectivity over LTE networks. However, from our
own experiences, as well as that of others [12], such a simplistic
characterization of networked services over LTE networks is
insufficient. This becomes increasingly true in rural regions,
as base station coverage areas are greater, and weaker signals
are more commonly experienced. Even in well-covered urban
areas, performance can suffer during times of atypically high
usage, i.e. flash crowds due to a heavily attended community
event [13], [14]. As application requirements place more load
on the network, it becomes critical to determine, not only
whether coverage exists in a region, but whether that coverage
is of high enough quality to support the types of applications
wanted, or needed, by the local users. As we have seen with
recent shelter-in-place orders due to COVID-19, residents of
regions with sub-standard Internet access are at risk of being

left behind, educationally, economically and medically [4], [15].
To evaluate network quality, we turn to QoS and QoE metrics
and use these metrics to analyze the ability of the networks
to support the most accessed applications: Web browsing and
video streaming traffic, which are applications of high, and
still growing, usage. In this section, we describe the QoS and
QoE metrics collected for this measurement study, which are
summarized in Table I.

A. Quality of Service Metrics

Different applications have different network requirements,
and QoS metrics capture the state of network performance. For
instance, delay-sensitive Internet traffic, such as live streaming
video and multimedia teleconferencing, requires low end-to-
end delay to maintain interactivity; an application such as
on-demand gaming is dependent on both end-to-end delay
and achieved throughput. Barriers to achieving usable QoS in
LTE networks include poor coverage quality and high network
utilization. We measure four metrics to determine QoS.

Reference Signal Received Power (RSRP): RSRP is defined
as the linear average over the power contributions (in Watts) of
the resource elements that carry cell-specific reference signals
within the measurement frequency bandwidth [16]. Although
there are many key performance indicators (KPIs) related to
received signal strength, we focus specifically on RSRP, as
defined by 3GPP [17]. [18] demonstrates that RSRP has a
significant impact on the mean opinion score (MOS) of video
streaming; MOS varies significantly at RSRP values between
-84dBm and -102dBm and declines rapidly below -104dBm.
RSRP is used for a variety of LTE operations (e.g., cell
selection, handover decisions [19], network quality assessment,
etc.) and, as illustrated by [20], is widely accessible through
mobile operating systems. Typically, RSRP is reported in dBm
by the user equipment (UE) as the average power over several
narrow-band control channels. We record instantaneous RSRP
readings from the user equipment every one second through
the Network Monitor application [21].

Throughput: Our network monitoring suite automates the
collection of throughput measurements by fetching a pre-
specified 500 MB file from an AWS instance, hosted in Virginia.
For uniformity, we use the same instance for all measurement
tests. To calculate the throughput, the client initiates iPerf
threads over TCP to download the file. The large file size
allows the data traffic to fill the pipe and to minimize the effect
of slow start. We log the packet traces at the client during the

TABLE I: Overview of QoS and QoE metrics at each location, aggregated across available providers.

Type Metric Test Interval # of Datapoints Tools

QoS RSRP 1 second 2160 Network Monitor
Throughput 1 second 2160 iPerf
Latency 1 second 960 HPing3
Packet loss N/A N/A tshark

QoE Start-up delay 1 second 2160 Selenium, iframe API
Video quality 1 second 2160 Selenium, iframe API
Resolution switches 1 second 2160 Selenium, iframe API
Rebuffering percentage 1 second 2160 Selenium, iframe API
Buffer size 1 second 2160 Selenium, iframe API
Page load time N/A 300 Selenium, Chromium
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iPerf tests to sample throughput over one second intervals for
each location.

Latency: We measure round-trip times through pings, initiated
by Hping3 [22], to the same Virginia-based AWS server. We
configure Hping3 to use TCP packets instead of ICMP because
ICMP packets were occasionally dropped at the server. The
latency test runs for 120 seconds with one-second intervals
between each ping. We measure latency twice during each
measurement session: once before all the video stream and
throughput tests (described above) and once immediately after.
Hence we collect 240 latency data-points per operator, for
960 total at every location. Low round-trip times tend to
be indicative of a better user experience for delay-sensitive
applications.

Packet Loss: Packet loss in cellular networks can occur due
to network congestion and/or transmission errors [23]. We
analyze the synchronous packet traces from both the client
and the server during throughput tests to compute packet loss
using tshark CLI.

B. Quality of Experience Metrics

To measure QoE, we focus on streaming video and Web
browsing, currently the most heavily used QoE-centric ap-
plications in mobile networks [24]. Internet video streaming
services typically use Dynamic Adaptive Streaming over HTTP
(DASH) [25] to deliver a video stream. DASH divides each
video into time intervals known as segments or chunks, which
are then encoded at multiple bit-rates and resolutions. We
measure a variety of metrics associated with video streaming
quality, as described below.

To assess the quality of Web browsing, we measure the page
load times of some of the most frequently accessed Web pages.
Numerous studies and media articles report its importance
for user experience [26], [27], and consequently to business
revenue. The QoE metrics we measure are summarized in
Table I and are described below. Our approach for measuring
the majority of these metrics is described in section III.

Start-up Delay: Start-up delay is the time elapsed from the
moment the player initiates a connection to a video server to
the time the application starts rendering video frames. This
delay usually corresponds to how quickly the HTTP adaptive
streaming client is able to fill the threshold buffer required for
playback.

Video Quality: Video quality is the number of pixels in each
dimension of video frame [28]. Video quality, or resolution, is
an important component of QoE; a higher resolution results in
a better visual experience, up to a point.

Resolution Switching: Frequent changes in video resolution
can result in user frustration, particularly when the video quality
is downgraded [24]. We compute the number of samples that
had a different resolution from the prior sample in our video
streaming sessions as a percentage of total number of samples
collected during the video session. Since resolution switches
occur in-between video chunks that are typically 4-5 seconds

long [28], our analysis at one-second granularity is a lower
bound estimate, if not better. Both the magnitude (difference
in pre- and post-switch resolution) and the frequency of video
resolution switches affect the quality of experience [24].

Rebuffering Percentage: A rebuffering event occurs when
the application buffer waits to accumulate enough content to
resume playback. Poor link quality and/or congestion can lead
to an increase in video rebuffering events because they cause
delays in packet delivery [29]. When rebuffering occurs, the
user notices interrupted video playback, commonly referred to
as stalling. Rebuffering events have a key influence on user
satisfaction and significantly impact video abandonment [30].
We represent the rebuffering percentage as the amount of time
the video stalls during the playback expressed as a percentage
of total playback time.

Buffer Size: The streaming client employs a playout buffer
or client buffer, whose maximum value is the buffer capacity
(in seconds) to temporarily store chunks to absorb network
delay variations (i.e., jitter). To ensure smooth playback and
adequate buffer level, the client requests a video clip chunk by
chunk (in seconds) using HTTP GET requests, and dynamically
determines the resolution of the next chunk based on network
conditions and buffer status. When the buffer level is below
a minimum threshold, the client requests chunks as fast as
the network can deliver them to increase the buffer level. The
playback stalls when the buffer is empty before the end of the
playback is reached.

Page Load Time: To compute load times, the fetching of Web
pages is automated using Selenium [31]. We use the Tranco
Top 25 list [32]. For evaluation, we log the navigation timings
of a Web page starting from navigationStart through the
loadEvent End event [33]. These instances of event timings
help in a fine-grained analysis of page load times. We download
each webpage three times and average the results. The browser
cache is automatically wiped out after each Web page load to
reflect true load time for the next iteration.

III. METHODOLOGY AND DATASETS

It is our goal for our measurements to represent a range
of network deployments that vary both by signal quality and
offered load. We focus on the networks of the four major
U.S. providers: AT&T, Sprint, T-Mobile and Verizon. In this
section, we first describe our custom measurement suite and
our measurement methodology. We then describe the details
of our collected datasets.

A. Measurement Suite

We collect measurements from which we can derive QoS
and QoE in a variety of locations in which we expect varying
LTE performance. Capture of disparate performance will give
us both a broad picture of QoS and QoE, and the opportunity
to study performance in different population densities (urban
vs. rural vs. tribal reservations) and usage scenarios (congested
vs. typical usage). To collect these measurements, we use a
custom-built measurement suite that captures both network-
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TABLE II: Summary of Datasets

Location Date (2019) # LTE Packets  Type Carriers™

New Mexico

Tribal_1 May 28 3.18 Million Tribal, Rural V,A,T,S

Tribal_2 May 29 1.38 Million Tribal, Rural V,T

Tribal_3 May 28 2.03 Million Tribal, Rural VA TS

Tribal_4 May 30 2.16 Million Tribal, Rural V,A,T,S

Tribal_5 May 30 2.27 Million Tribal, Rural VA, T,S

Tribal_6 May 31 2.33 Million Tribal, Rural V,AT,S

Rural_1 May 31 1.26 Million Non-Tribal, AAN
Rural

Rural_2 Jun 01 2.83 Million Non-Tribal, V,A,T,S
Rural

San Diego, CA

Urban_I_Cong  Sep 22 2.25 Million Urban, V,A.T,S
Congested

Urban_1_Base Sep 28 1.92 Million Urban, VA TS
Baseline

Urban_2_Cong  Sep 29 2.51 Million Urban, V,A,T,S
Congested

Urban_2_Base Sep 30 1.97 Million Urban, V,A. TS
Baseline

Urban_3_Cong  Sep 21 2.65 Million Urban, V,AT,S
Congested

Urban_3_Base Sep 30 2.13 Million Urban, VA TS
Baseline

San Francisco, CA

Urban_4_Cong  Sep 25 2.18 Million Urban, V,A. TS
Congested

Urban_4_Base  Sep 26 2.08 Million Urban, VA TS
Baseline

*This column lists the mobile carriers present in each data set (some areas had no
coverage for particular network operators). V: Verizon, A:AT&T, T:T-Mobile, S: Sprint.

and application-level metrics. For video, application-level
metrics are measured by streaming YouTube videos; we choose
YouTube because it has an extensive mobile reach of 88%,
more than 3.5x that of its next best competitor [34]. For Web
browsing, we utilize the Tranco ranking list as it addresses
the stability and responsiveness issues faced by other Website
ranking services [32].

We run our measurement suite on Lenovo ThinkPad W550s
laptops, each of which is tethered to its own Motorola G7 Power
(Android 9) via USB in order to measure cellular performance.
The cellular plans on all our cellular user equipment (UE) have
unlimited hot-spot data enabled to effectively achieve the same
level of performance as we would on the mobile device. We
run our measurement suite on laptops tethered to phones as
this configuration gives us the same application performance
while facilitating ease of programming and data extraction, and
achieving higher level of unification for various application-
level measurements. We record instantaneous RSRP readings
from the UEs every one second through the Network Monitor
application [21].

To collect video QoE metrics, we run a 3-minute clip
of a Looney Tunes video three times across each of the
four LTE providers at each location; we exclude from our
results the sessions that experienced playback errors during
execution. We chose this particular video due its mix of high
and low action scenes, which results in variable bitrates for
different segments in the video (typically, high action scenes

have higher bitrate than low action scenes). To infer video
QoE, we collect the input features (RSRP and throughput)
synchronously, on a separate device, so as not to bias the
video streaming measurements. After testing multiple playback
durations, we observed that a 3-minute window was adequate
for the playback to reach steady state, while long enough to
capture rebuffering and/or resolution switches that occur. To
execute this experiment, we first automate the loading and
playback of the YouTube video on the Chrome browser using
Selenium [35]. The video resolution is set to auto. Then we use
YouTube’s iframe API [36] to capture playback events reported
by the video player. The API outputs a set of values that
indicate player state (not started, paused, playing, completed,
buffering) using the getPlayerState() function. The API also
provides functions for accessing information about play time
and the remaining buffer size. Similarly, we employ Selenium to
automate the loading of Web pages on the Chromium browser
to capture page load time measurements.

B. Description of Datasets

We collected 16 datasets from 12 locations across the
Southwestern U.S. Eight of those datasets were collected from
rural locations that had sparse cellular deployment. Six of
the eight locations were under the jurisdiction of American
Indian Tribal sovereignty, while two were from non-tribal rural
regions. In the remaining text, we sometimes use the word
“rural” to refer to both tribal and non-tribal rural areas. These
eight collection points span an area of 21 square miles in
New Mexico and were collected over a period of five days.
In addition, we collect another eight datasets from four urban
locations in California. For each urban location, we collect two
datasets: one during a large event or gathering, in which we
expect cellular network congestion to occur (these datasets
are marked with _Cong) [13], [37]; and a second during
typical operating conditions. We call the latter dataset the
baseline for that location (marked with _Base). Hence, our
traces are broadly classified into three categories: rural and
tribal, congested urban, and baseline urban. The details of
each dataset are summarized in Table II. In each location,
we concurrently collected the complete set of traces on four
major U.S. carriers (AT&T, Sprint, T-Mobile and Verizon)
using four separate, equivalent UEs, as described in §III-A.
The designation of each location as tribal, rural or urban (“type”
column in Table II) is based on information gathered from the
Census Bureau [38]. Through these measurement campaigns,
we collect and analyze over 32.7 million LTE packets.

IV. NETWORK CHARACTERIZATION

In this section, we analyze network performance charac-
teristics in each measurement location, and by so doing we
attempt to determine whether any generalizations based on
network offered load exist. Note that in certain locations,
one or more operators did not provide LTE coverage, as is
indicated in Table II. Our assessment reveals several discernible
differences in network performance across region types and
network conditions (congested/uncongested).
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Fig. 1: Distribution of QoS metrics across different network conditions.

A. Quality of Service Analysis

We evaluate the relationship between spatially and temporally
varying network conditions through four QoS metrics: RSRP,
throughput, latency and packet loss, as described in §II-A.
We analyze both the mean and median values and present
median results aggregated across all telecom providers at
each location. In addition, wherever applicable we report
any performance deviations that fall beyond one standard
deviation (68% confidence interval) because they may skew
the distribution. Stated otherwise, we separately report the
performance of each individual telecom operator if z <y — o
or x > u+ o, where x is the median performance value for the
outlier operator, i and o are the mean and standard deviation of
the entire distribution. In the boxplots, the right and left edges
of the box represent the first quartile (25" percentile) and
third quartile (75" percentile), respectively, with the median
line drawn within the box. The whiskers capture 5" to 95"
percentile values.

RSRP: We observe a wide range of RSRP values on all levels:
between datasets, within datasets, and between dataset types, as
shown in Figure 1(a). The median RSRP value across all rural
and tribal locations is -118dBm. We observe that rural and tribal
locations report 15.06% and 19.55% lower RSRP values than
urban congested and baseline urban locations, respectively.'
This result is consistent with reports of limited LTE coverage
in rural and tribal locations; these regions frequently have
significantly sparser LTE base station deployment, and hence
larger coverage areas that lead to regions with lower signal
quality. One notable exception is Tribal_4 where the reported
values are, on average, 12dBm higher than elsewhere in
the rural region. This is likely due to the relatively denser
deployment of base stations in the area; our wireless gear
was physically closer to the eNodeBs (LTE base stations) that
served the region (verified through CellMapper [39]).

Throughput: Figure 1(b) compares throughput across all

locations, averaged across all providers present in each location.

We observe high variability in throughput distributions, with

values that range from less than 500 Kbps to about 30 Mbps.

The small difference in RSRP median value between the congested urban
and baseline results may stem from multiple causes: a difference in weather
conditions on measurement days, a change in transmission power of the
eNodeBs due to utilization, and the fact that the Urban_4_Base collection
location was approximately 30m away from the Urban_4_Cong location due
to the closure of the original collection venue.

Congested urban measurements report a median throughput
of 1.51 Mbps, while rural and tribal regions report 35% less
median throughput, at 0.98 Mbps. Uncongested urban locations
have by far the best average performance.

We observe a few outliers in our analysis: AT&T reports
30x and 26x the median throughput values in Tribal_4 and
Tribal_6, faring considerably better than its competitors. In
addition, Sprint performs 8 better than the region’s median.
In Tribal_4, if we exclude the outlier (AT&T), the median
value for the other operators is 0.56 Mbps, which is 41% less
than the worst performing congested dataset, Urban_4_Cong
(median: 0.95 Mbps). This is unexpected since: (1) Tribal_4
has denser coverage and (2) our measurement setup was in
close proximity to all the connected eNodeBs (this resulted in
12dBm higher RSRP than other rural locations). Similarly, if
we exclude the outliers in Tribal_6 (AT&T and Sprint), the
median throughput is 43% worse than Urban_4_Cong.

Our results demonstrate that, on average, the LTE networks
we measured in rural regions perform worse than congested
urban networks. This performance difference, and the absolute
performance values, likely indicate the difference between
having a stable teleconferencing session and an unusable service
(e.g., Zoom recommends a minimum downstream bandwidth
of 1.5 Mbps [40]). Urban baseline locations register a median
throughput of 10.92 Mbps. In comparison, congested locations
report 7x less median throughput, while rural and tribal regions
register 11x lower throughput than baseline urban locations.

Latency: Figure 1(c) shows the average latency, measured
as round-trip time (RTT), across all measurements in each
location. Urban baseline datasets reveal a median latency of
64 ms, while in the congested networks, the average RTT more
than doubles to a median value of 140 ms, again verifying
our expectation of network congestion. Rural regions report a
median latency of 193 ms, which translates to a 38% and 202%
increase in round trip-times compared to congested and urban
baseline datasets, respectively. Notably, Tribal_4 has an average
latency of 147 ms despite close proximity of our measurement
setup to the LTE base stations, and a location geographically
closer to our ping server in Virginia, than the locations in
California. Reasons for this extra latency are varied, and may
include a less direct and/or slower path out of this region to a
major Internet backbone. Overall, Tribal_2 and Urban_2_Cong
exhibit the widest variability in latency measurements.

Packet Loss: The average loss rate across providers is
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Fig. 2: Distribution of QoE metrics across different network conditions.

reported in Figure 1(d). While we observe variability, a
birds-eye view clearly demonstrates that the baseline urban
locations benefit from marginal loss rates (median is 0.23%).
We observe more than 6x higher median loss rates in the
congested urban datasets, again indicating heavy congestion.
As a group, the congested urban locations experience the
second best performance (median loss rate is 1.56%), and
rural networks experience the highest average loss rates. We
observe particularly high loss in Tribal_1, Tribal_2, Tribal_3
and Tribal_5 (median of 2.53% across all four locations). A
performance outlier is Tribal_6; despite its comparable rural
and tribal location, Tribal_6 reports a much lower loss rate of
0.72%.

Takeaway: Our analysis of QoS metrics reveals the wide
gap in LTE performance across different regions and network
conditions. Our results illustrate that the rural and tribal regions
we study experience the poorest mobile broadband performance,
performance that is typically even worse than heavily congested
urban networks. This poor performance is consistent with
prior findings [9], [41]. The chronic under-provisioning of
LTE networks in rural and tribal regions, due to both sparser
deployment and some combination of less efficient and lower
speed backhaul, implies mobile broadband in these regions
often cannot meet the minimum recommended QoS required for
applications such as video streaming and video chat. While this
poor Internet usability has a negative impact on local residents,
this impact has been grossly amplified during the shelter-in-
place orders of the COVID-19 pandemic, when schooling, work,
telemedicine, and other critical activities have been moved
online [4], [15]. Our measurements indicate that in many of
these rural locations, despite the presence of mobile broadband,
the quality of those networks is often too poor to support these
now-essential video-based applications.

B. Video QoE Analysis

Next we characterize key video QoE indicators in different
network conditions to reveal application-level performance
differentials of video streaming. Similar to §IV-A, we report
median values across all telecom providers unless there are
samples that lie outside of one standard deviation (u).

Start-up Delay: Figure 2(a) plots the start-up delay. In rural
and tribal regions, the median start-up delay is 6.52s, while
congested urban locations report 5.29s. Urban baselines have
the lowest reported delay at 0.7s (median). We also note that

the rural and tribal locations have far higher variability than
congested datasets. For instance, the median range of start-up
delay (i.e., difference between the max and the min values in
a distribution) is 12.5s in these areas as opposed to 8.6s in
congested networks. This behavior can be attributed to under-
provisioned LTE networks in rural and tribal regions that are
sensitive to user demand, even during normal operating hours,
thereby resulting in large fluctuations. This result is consistent
with observations in Figure 1(b); lower throughput coupled with
higher packet loss would likely result in the inconsistencies in
download time of the initial video segments. Baseline urban
offers the least variability of 3.7s. In Figure 1(b), we saw that
the AT&T network achieves higher throughput at Tribal 4
and Tribal_6. Consequently, we observe that video sessions in
both Tribal_4 and Tribal_6 on AT&T network have 3x lower
start-up delay than the other providers. We note that start-up
delay does not convey any information about playback video
resolution.

Video Quality: Figure 2(b) depicts playback resolution of the
YouTube video, sampled at one second granularity. During our
measurements, we ensure that the video resolution is set to auto.
As a result, playback resolution and resolution switches are a
direct result of network conditions and changes in congestion
levels. While all of the urban baseline locations indicate near
full-HD (1080p) rendering of the video, congested locations
have a median resolution of 240p. One possible explanation
could be the throttling of video quality by telecoms as part
of their congestion mitigation schemes. Rural measurements
show marginally better performance with a median resolution
of 360p, but exhibit wider variability, ranging between 144p to
1080p. Video sessions with 1080p in rural regions are associated
with the AT&T network, which is consistent with the results
from Figure 1(b) where AT&T records distinctively higher
throughput values.

Resolution Switching: Variability in video resolution is
synonymous with quality switches, which is often perceived
as a QoE performance degradation [42]. Figure 2(c) represents
the number of samples that had a different resolution than the
previous sample, as a percentage of total collected samples
during the video session. We observe a median value of 1.64%
in rural regions, as opposed to 0.92% in congested urban
datasets. This value is nearly 6x smaller for baseline urban
datasets, with a median value of 0.16%, as compared to urban
congested measurements. Frequent resolution switches typically
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Fig. 3: Cumulative distribution of buffer size across different network conditions.

lead to lower user engagement [42]. This implies that the
high percentage of switches in rural and tribal regions could
lead to difficulty in user engagement with video streaming
services, as needed during remote learning, work at home
video conferences, and other vital applications.

Rebuffering: This metric represents the amount of time the
video stalls or rebuffers during the playback expressed as a
percentage of total playback time, shown in Figure 2(d). There
is a higher median rebuffering ratio of 2.68% in rural and
tribal regions, followed by congested urban regions at 1.85%.
Baseline urban measurements report a more than 5x and 3x
lower rebuffering ratio than rural/tribal and congested urban,
respectively.

Buffer Size: Figure 3 shows the buffer size distribution
captured during YouTube streaming sessions. For ease of
comprehension, we separate the result graphs into the three
categories. Here, a greater amount of buffered content is
better, as it allows the application to smooth performance
despite varying jitter. Baseline measurements report higher
buffer levels with a median value of 44.3s (Figure 3(c)) while
congested datasets report 27.7s (Figure 3(b)), a 34% decrease
from baseline measurements. Rural regions have the lowest
median buffer at 20.2s (Figure 3(a)), which is a reduction
by 52% and 27% from baseline urban and congested urban
measurements, respectively.

Takeaway: Our analysis of QoE metrics indicates that user
experience suffers due to under-provisioned LTE networks

1.0 |—— Tribal_1

0 5 10 15 20 25

30 35 0 5 10

in rural and tribal regions. The results reinforce our findings
in §IV-A that LTE networks in these regions are likely to
fail to provide a quality, or even usable, experience for video
streaming. Unsurprisingly, in most cases rural networks under-
perform in comparison to congested LTE networks in urban
regions, implying that the worst case experience in an urban
network is likely still better than the average case experience
in a rural or tribal region. However, the extent of performance
degradation in rural and tribal areas as compared to other
network conditions is remarkable and noteworthy.

C. Page Load Time

Web performance has
long been crucial to the

Internet ecosystem since Locations PLT Timeout
a significant fraction of Tribal 1 16.9%
Internet content is con- Tri';a%_Z Séﬁ%
Tribal_3 26.4%
sumed as Web pages. The Tribal 4 0%
end-user quality percep- Tribal_5 30.1%
. i th P Tribal_6 24.6%
tion 1n the context o Rural_1 66.1%
interactive data services Rural_2 27.3%
is dominated by Web Urban_1_Cong 17.6%
. : . Urban_1_Base 0.0%
page loadlng. times; the Urban_2_Cong e
longer the wait, the lower Urban_2_Base 0.0%
the user satisfaction [43] Urban_3_Cong 17:3%
Studi h h h . Urban_3_Base 0.88%

tudies have shown that

i . Urban_4_Cong 24.0%
perceived time for users Urban_4_Base 0.0%

accessing the Web can
be exceedingly magnified

TABLE III: Webpage Load

Timeouts.
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Fig. 4: Page load times of Tranco top 25 websites.
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with respect to actual chronological time, thus degrading the
perceived performance even further [44], [45]. Page load times
are depicted in Figure 4. We bin the results into similar
categories as in Figure 3. From our evaluation we learn that
rural and tribal locations (shown in Figure 4(a)) produce the
slowest load times with a median value of 9.75 seconds. This
is 74% slower than congested dataset (median value is 5.6
seconds) and 2.7x lower than baseline urban measurements
(median value is 2.67 seconds). Tribal_2 performs the worst
in tribal and rural locations with a median load time of 13.08
seconds while Urban_2_Cong is the most under-performing
dataset in congested urban at 7.28 seconds. In baseline urban,
all of the locations exhibit similar load times within a margin of
+1 second difference. Our examination reveals a considerable
fraction of Web pages fail to load within the timeout period of
30 seconds (shown in Table III) in rural, tribal and congested
urban regions. We observe a median timeout value of 28.7%
across tribal and rural areas, which is 38.7% higher than
that reported in congested urban (median value is 20.8%).
Rural_1 logs the highest timeout percentage with over 66% of
Web pages failing to load; Urban_2_Cong reports the highest
(41.8%) in the congested dataset. Urban baseline locations have
faster load times and little to no timeouts for Web pages. Similar
to section IV-B, we observe that Web browsing experience
suffers more in rural and tribal regions than in urban regions
(with or without atypical network utilization).

V. RELATED WORK

Manual measurements are a common approach to calculate
cellular coverage [46]. This includes methods such as war-
driving [47], war-walking [48], and aerial systems [49], which
usually require high operational expenditure. Mobile analytics
companies [50], [51] contribute to measurement collection
by crowd-sourcing measurements directly from end-user de-
vices via standalone mobile apps [50], [52] or measurement
SDKs [52]-[54] integrated into partner apps. However, these
are limited in scope because crowd-sourced measurements
do not have spatial uniformity. As a result, some of the
desired measurement locations may not exist in these databases
(possibly due to lack of adoption of the application or SDK by
the local community). Further, outsourced databases typically
carry a hefty licensing fee or are otherwise restricted [55].
While several public datasets consist of Internet performance
measurements (e.g. [54], [56]), there is a lack of datasets that
represent the variability in mobile broadband performance as
a consequence of sparse deployments or network congestion.
Many mobile network datasets focus on coverage [50], [57];
the FCC annually publishes its own broadband report [7].
Unfortunately, these broadband reports are widely known
to be inaccurate [58]. Further, we have shown that the
use of coverage maps alone are inadequate to infer actual
usability. While several prior studies [59], [60] have focused
on LTE performance analysis and traffic characterization, these
studies do not compare performance across differing population
densities and region types.

VI. CONCLUSION

Online learning, work-at-home, tele-medicine and other ap-
plications that already experienced regular usage have exploded
in the post COVID-19 world, transitioning from conveniences
to critical everyday applications. Web browsing and video
streaming are necessary components of these applications, and
as such the study of network performance for users in all
regions is crucial. Through extensive measurements, we have
revealed the sharp contrast in cellular performance between
rural, tribal and urban locations; for instance, video QoE is at
least 10x worse and Web browsing is more than 2x worse in
the rural and tribal regions we studied than in urban locations
with typical cellular load. While prior work and past surveys
have reached similar conclusions, our study demonstrates and
quantifies the extent to which network performance lags in rural
and tribal communities. This suggests that users in under-served
regions are far more likely to drop out of virtual engagement
such as online lectures and e-learning. User disengagement
will unfortunately lead directly to a greater digital gap than
exists today [4], [15]. Broadband deployments that address
these access and coverage quality gaps are urgently needed.
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